Selection and validation of stable reference genes for RT-qPCR analysis across seven Musa genomes during early flowering development

##plugins.themes.bootstrap3.article.main##

KAWEE SUJIPULI
https://orcid.org/0000-0002-8307-4755
YONLADA MINGMANIT
PHITHAK INTHIMA
https://orcid.org/0000-0002-5587-6259
SRISANGWAN LAYWISADKUL
KUMROP RATANASUT
https://orcid.org/0000-0002-7221-7888
DUANGPORN PREMJET
https://orcid.org/0000-0003-3601-0721
SIRIPONG PREMJET
https://orcid.org/0000-0003-0921-4526
PONGSANAT PONGCHAROEN
https://orcid.org/0000-0002-3836-6468
WANWARANG PATHAICHINDACHOTE
https://orcid.org/0000-0003-1195-8137
MAHATTANEE PHINYO
https://orcid.org/0009-0003-5413-7707
THANITA BOONSRANGSOM
https://orcid.org/0000-0001-8362-1432

Abstract

Abstract. Sujipuli K, Mingmanit Y, Inthima P, Laywisadkul S, Ratanasut K, Premjet D, Premjet S, Pongcharoen P, Pathaichindachote W, Phinyo M, Boonsrangsom T. 2025. Biodiversitas 26: 125-135. Banana (Musa spp.) is a globally important fruit crop, with most edible varieties resulting from hybridizations between Musa acuminata (AA genome) and Musa balbisiana (BB genome). Seed formation in hybrid bananas is undesirable for both fresh consumption and processing, making it crucial to understand the genetic mechanisms controlling pollen viability and development to prevent seed set in commercial cultivation. However, comprehensive evaluations of reference genes for gene expression studies in various Musa genomic groups are still lacking. This study evaluated five candidate reference genes-ACT2, CAC, RPS4, RPL4, and SAMDC1-across seven Musa genomes using reverse transcriptase quantitative real-time PCR (RT-qPCR). Four of these genes (CAC, RPS4, RPL4, and SAMDC1) demonstrated high primer specificity, with single PCR amplification peaks and melting curve Tm values ranging from 75.42 ± 0.03 to 82.51 ± 0.03. Expression abundance varied, with Ct values between 21.58 ± 0.26 and 24.68 ± 0.20. Using five stability analysis programs, CAC was identified as the most stable reference gene across all seven Musa genomes, making it the optimal candidate for normalizing gene expression data in banana studies. This study provides a valuable tool for enhancing the accuracy of gene expression analysis in banana breeding programs targeting seedless fruit production, thereby demonstrating the practical relevance of reference gene evaluation in banana genomic studies.

##plugins.themes.bootstrap3.article.details##

References
Abbas A, Yu H, Li X, Cui H, Chen J, Huang P. 2021. Selection and validation of reference genes for RT-qPCR analysis in Aegilops tauschii (Coss.) under different abiotic stresses. Intl J Mol Sci 22 (20): 11017. DOI: 10.3390/ijms222011017.
Akech V, Bengtsson T, Ortiz R, Swennen R, Uwimana B, Ferreira CF, Amah D, Amorim EP, Blisset E, Van den Houwe I, Arinaitwe IK, Nice L, Bwesigye P, Tanksley S, Uma S, Suthanthiram B, Saraswathi MS, Mduma H, Brown A. 2024. Genetic diversity and population structure in banana (Musa spp.) breeding germplasm. Plant Genome 17 (3): e20497. DOI: 10.1002/tpg2.20497.
Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64 (15): 5245-5250. DOI: 10.1158/0008-5472.CAN-04-0496.
Boonsrangsom T, Chansongkram W, Saengjanchay J, Jumpathong J, Pongcharoen P, Pathaichindachote W, Ratanasut K, Sujipuli K. 2024. Molecular screening and allele identification of Thai banana genotypes for resistance to Fusarium wilt using validated SCAR markers. Biodiversitas 25 (8): 2590-2601. DOI: 10.13057/biodiv/d250831.
Boonsrangsom T, Fuenghoi C, Premjet D, Suvittawat K, Ratanasut K, Sujipuli K. 2023. Genetic relationships and genome verification of Thai banana cultivars using random amplification of polymorphic DNA (RAPD) markers. Biodiversitas 24 (7): 3758-3765. DOI: 10.13057/biodiv/d240713.
Boonsrangsom T, Phetnin B, Ratanasut K, Sujipuli K. 2020. Assessment of genetic diversity among Musa cultivars based on sequence-related amplified polymorphism technique. Naresuan Univ J Sci Technol 28 (2): 52-61. DOI: 10.14456/nujst.2020.15.
Castañeda NEN, Alves GSC, Almeida RM, Amorim EP, Ferreira CF, Togawa RC, Costa MMDC, Grynberg P, Santos JRP, Cares JE, Miller RNG. 2017. Gene expression analysis in Musa acuminata during compatible interactions with Meloidogyne incognita. Ann Bot 119 (5): 915-930. DOI: 10.1093/aob/mcw272.
Chaurasia AK, Patil HB, Krishna B, Subramaniam VR, Sane PV, Sane AP. 2017. Flowering time in banana (Musa spp.), a day-neutral plant, is controlled by at least three FLOWERING LOCUS T homologues. Sci Rep 7 (1): 5935. DOI: 10.1038/s41598-017-06118-x.
Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY. 2011. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234 (2): 377-390. DOI: 10.1007/s00425-011-1410-3.
Costa ÉdC, Bastos LS, Gomes TG, Miller RNG. 2024. Reference genes for RT-qPCR analysis in Musa acuminata genotypes contrasting in resistance to Fusarium oxysporum f. sp. cubense subtropical race 4. Sci Rep 14 (1): 16578. DOI: 10.1038/s41598-024-67538-0.
El-Shahed AA, Abdellatif KF, Ibrahim IA, Mohamed AM, Abdelsalam IZ, Elsehrawy OA. 2017. Efficiency of sequence-related amplified polymorphism (SRAP) and target region amplified polymorphism (TRAP) markers in detecting banana somaclonal variants. Afr J Biotechnol 16 (16): 879-888. DOI: 10.5897/AJB2017.15893.
FAO [Food Agriculture Organization]. 2023. Banana Market Review 2022. Food Agriculture Organization of the United Nations. Rome.
Gopalam R, Rupwate SD, Tumaney AW. 2017. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica. PLoS One 12 (11): e0186978. DOI: 10.1371/journal.pone.0186978.
Han PP, Qin L, Li YS, Liao XS, Xu ZX, Hu XJ, Xie LH, Yu CB, Wu YF, Liao X. 2017. Identification of suitable reference genes in leaves and roots of rapeseed (Brassica napus L.) under different nutrient deficiencies. J Integr Agric 16 (4): 809-819. DOI: 10.1016/S2095-3119(16)61436-3.
Hellemans J, Mortier G, de Paepe A, Speleman F, Vandesompele J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8 (2): R19. DOI: 10.1186/gb-2007-8-2-r19.
Hu C, Sheng O, Dong T, Yang Q, Dou T, Li C, He W, Gao H, Yi G, Deng G, Bi F. 2020. Overexpression of MaTPD1A impairs fruit and pollen development by modulating some regulators in Musa itinerans. BMC Plant Biol 20 (1): 402. DOI: 10.1186/s12870-020-02623-w.
Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Höning S, Evans PR, Owen DJ. 2010. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141 (7): 1220-1229. DOI: 10.1016/j.cell.2010.05.006.
Khairul-Anuar MA, Mazumdar P, Lau SE, Tan TT, Harikrishna JA. 2019. High-quality RNA isolation from pigment-rich Dendrobium flowers. 3 Biotech 9 (10): 371. DOI: 10.1007/s13205-019-1898-y.
Kong Q, Yuan J, Gao L, Zhao L, Cheng F, Huang Y, Bie Z. 2015. Evaluation of appropriate reference genes for gene expression normalization during watermelon fruit development. PLoS One 10 (6): e0130865. DOI: 10.1371/journal.pone.0130865.
Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA. 2015. Transcripts and microRNAs responding to salt stress in Musa acuminata Colla (AAA Group) cv. Berangan roots. PLoS One 10 (5): e0127526. DOI: 10.1371/journal.pone.0127526.
Li MY, Wang F, Jiang Q, Wang GL, Tian C, Xiong AS. 2016. Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Front Plant Sci 7: 313. DOI: 10.3389/fpls.2016.00313.
Lü J, Yang C, Zhang Y, Pan H. 2018. Selection of reference genes for the normalization of RT-qPCR data in gene expression studies in insects: A systematic review. Front Physiol 9: 1560. DOI: 10.3389/fphys.2018.01560.
Mingmanit Y, Boonsrangsom T, Sujipuli K, Ratanasut K, Inthima P. 2023. Pollen viabilities and gene expression profiles across Musa genomes. AoB Plants 15 (4): plad052. DOI: 10.1093/aobpla/plad052.
Munusamy U, Yusuf YM, Baharum NA. 2019. RT-qPCR profiling of pathogenesis-related genes in Musa acuminata cv 'berangan' seedlings challenged with Fusarium oxysporum f. sp. cubense tropical race 4. Pak J Agric Sci 56 (1): 37-42. DOI: 10.21162/PAKJAS/19.4296.
Nocum JD, Manohar AN, Mendoza JS, Dela Cueva FM, Gardoce RR, Lachica GC, Lantican DV. 2022. Identification of suitable internal control genes for gene expression analysis of banana in response to BBTV infection. Plant Gene 32: 100383. DOI: 10.1016/j.plgene.2022.100383.
Oliveira DA, Tang JD, Warburton ML. 2021. Reference gene selection for RT-qPCR analysis in maize kernels inoculated with Aspergillus flavus. Toxins 13 (6): 386. DOI: 10.3390/toxins13060386.
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pairwise correlations. Biotechnol Lett 26 (6): 509-515. DOI: 10.1023/b.0000019559.84305.47.
Pinheiro DH, Siegfried BD. 2020. Selection of reference genes for normalization of RT-qPCR data in gene expression studies in Anthonomus eugenii Cano (Coleoptera: Curculionidae). Sci Rep 10 (1): 5070. DOI: 10.1038/s41598-020-61739-z.
Premjet D, Boonsrangsom T, Sujipuli K, Ratanasut K, Kongbangkerd A, Premjet S. 2022. Morphological and molecular characterizations of Musa (ABB) 'Mali-Ong' in Thailand. Biology 11 (10): 1429. DOI: 10.3390/biology11101429.
Pucker B, Pandey A, Weisshaar B, Stracke R. 2020. The R2R3-MYB gene family in banana (Musa acuminata): Genome-wide identification, classification, and expression patterns. PLoS One 15 (10): e0239275. DOI: 10.1371/journal.pone.0239275.
Qi S, Yang L, Wen X, Hong Y, Song X, Zhang M, Dai S. 2016. Reference gene selection for RT-qPCR analysis of flower development in Chrysanthemum morifolium and Chrysanthemum lavandulifolium. Front Plant Sci 7: 287. DOI: 10.3389/fpls.2016.00287.
Rego ECS, Pinheiro TDM, Antonino JD, Alves GSC, Cotta MG, Fonseca FCA, Miller RNG. 2019. Stable reference genes for RT-qPCR analysis of gene expression in the Musa acuminata-Pseudocercospora musae interaction. Sci Rep 9 (1): 14592. DOI: 10.1038/s41598-019-51040-z.
Safhi FA, Alshamrani SM, Alshaya DS, Hussein MAA, El-Moneim DA. 2023. Genetic diversity analysis of banana cultivars (Musa sp.) in Saudi Arabia based on AFLP marker. Curr Issues Mol Biol 45 (3): 1810-1819. DOI: 10.3390/cimb45030116.
Sagun CM, Grandmottet F, Suachaowna N, Sujipuli K, Ratanasut K. 2020. Validation of suitable reference genes for normalization of quantitative reverse transcriptase-polymerase chain reaction in rice infected by Xanthomonas oryzae pv. oryzae. Plant Gene 21: 100217. DOI: 10.1016/j.plgene.2019.100217.
Silver N, Best S, Jiang J, Thein SL. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7: 33. DOI: 10.1186/1471-2199-7-33.
Slameto. 2023. Genetic diversity and molecular analysis using RAPD markers of banana cultivars in the five regions of East Java, Indonesia. Biodiversitas 24: 5035-5043. DOI: 10.13057/biodiv/d240947.
Tian C, Jiang Q, Wang F, Wang GL, Xu ZS, Xiong AS. 2015. Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS One 10 (2): e0117569. DOI: 10.1371/journal.pone.0117569.
Vandesompele J, de Preter K, Pattyn F, Poppe B, Van Roy N, de Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (7): research0034. DOI: 10.1186/gb-2002-3-7-research0034.
Wang C, Cui HM, Huang TH, Liu TK, Hou XL, Li Y. 2016. Identification and validation of reference genes for RT-qPCR analysis in non-heading Chinese cabbage flowers. Front Plant Sci 7: 811. DOI: 10.3389/fpls.2016.00811.
Wang G, Tian C, Jiang Q, Xu ZS, Wang F, Xiong AS. 2016. Comparison of nine reference genes for real-time quantitative PCR in roots and leaves during five developmental stages in carrot (Daucus carota L.). J Hortic Sci Biotechnol 91 (3): 264-270. DOI: 10.1080/14620316.2016.1148372.
Xie F, Xiao P, Chen D, Xu L, Zhang B. 2012. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80: 75-84. DOI: 10.1007/s11103-012-9885-2.
Yang QS, Gao J, He WD, Dou TX, Ding LJ, Wu JH, Li CY, Peng XX, Zhang S, Yi GJ. 2015. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics 16 (1): 446. DOI: 10.1186/s12864-015-1551-z.
You S, Cao K, Chen C, Li Y, Wu J, Zhu G, Fang W, Wang X, Wang L. 2021. Selection and validation of reference genes for qRT-PCR normalization in different cultivars during fruit ripening and softening of peach (Prunus persica). Sci Rep 11 (1): 7302. DOI: 10.1038/s41598-021-86755-5.
You Y, Zhang L, Li P, Yang C, Ma F. 2016. Selection of reliable reference genes for quantitative real-time PCR analysis in plum (Prunus salicina Lindl.) under different postharvest treatments. Sci Hortic 210: 285-293. DOI: 10.1016/j.scienta.2016.07.031.
Yu W, Tao Y, Luo L, Hrovat J, Xue A, Luo H. 2021. Evaluation of housekeeping gene expression stability in carnation (Dianthus caryophyllus). N Z J Crop Hortic Sci 49 (4): 347-360. DOI: 10.1080/01140671.2021.1883069.
Zhang L, Liu L, Cheng P, Hanguo S, Rong B, Wen L, Yu G. 2017. Identification and validation of reference genes for RT?qPCR analysis in banana (Musa spp.) under Fusarium wilt resistance induction conditions. J Phytopathol 165: 746-754. DOI: 10.1111/jph.12614.
Zheng SJ, García-Bastidas FA, Li X, Zeng L, Bai T, Xu S, Yin K, Li H, Fu G, Yu Y, Yang L, Nguyen HC, Douangboupha B, Khaing AA, Drenth A, Seidl MF, Meijer HJG, Kema GHJ. 2018a. New geographical insights of the latest expansion of Fusarium oxysporum f. sp. cubense tropical race 4 into the Greater Mekong Subregion. Front Plant Sci 9: 457. DOI: 10.3389/fpls.2018.00457.
Zheng T, Chen Z, Ju Y, Zhang H, Cai M, Pan H, Zhang Q. 2018b. Reference gene selection for qRT-PCR analysis of flower development in Lagerstroemia indica and L. speciosa. PLoS One 13 (3): e0195004. DOI: 10.1371/journal.pone.0195004.
Zhou Y, Xia H, Liu X, Lin Z, Guo Y, Deng H, Wang J, Lin L, Deng Q, Lv X, Xu K, Liang D. 2022. Identification of suitable reference genes for qRT-PCR normalization in kiwifruit. Horticulturae 8 (2): 170. DOI: 10.3390/horticulturae8020170.

Most read articles by the same author(s)