Diversity of bacterial endosymbionts of Bemisia tabaci from some regions in Indonesia and the genetic diversity of Wolbachia endosymbiont

##plugins.themes.bootstrap3.article.main##

NADIYAH HIDAYATI
ALAN SOFFAN
https://orcid.org/0000-0003-3680-6295
TRIWIDODO ARWIYANTO
https://orcid.org/0000-0002-4182-428X
ARMAN WIJONARKO

Abstract

Abstract. Hidayati N, Soffan A, Arwiyanto T, Wijonarko A. 2024. Diversity of bacterial endosymbionts of Bemisia tabaci from some regions in Indonesia and the genetic diversity of Wolbachia endosymbiont. Biodiversitas 25: 4304-4314. Bemisia tabaci Gennadius 1889 (Hemiptera) is an insect that associates with endosymbiont bacteria to meet nutritional needs lacking in its food. The species has both primary and secondary endosymbionts, with infections showing significant dynamism among populations. Wolbachia is a facultative endosymbiont that infects 66% of all insect species, including B. tabaci, which is a key focus of this study. The study aimed to investigate the diversity of bacterial endosymbiont infections in several B. tabaci populations collected from Java and Sumatra, Indonesia, to explore the genetic diversity of Wolbachia endosymbiont. The B. tabaci population was collected from 17 districts in Java and Sumatra, and to determine the presence of bacterial endosymbiont was determined through molecular analysis using specific primers. The study involved a comprehensive methodology, including the construction and comparison of multiple alignment sequences, phylogenetic analysis, and genetic differentiation of Wolbachia in 10 representative populations of B. tabaci, which were then compared with Wolbachia sequences from other countries and arthropods. The results showed the presence of various bacterial endosymbionts found among the B. tabaci populations, including Candidatus portiera, Arsenophonus sp., Cardinium sp., Hamiltonella sp., Wolbachia sp., and Rickettsia sp. Wolbachia was found in all B. tabaci samples, while other endosymbiont bacteria varied quite widely among all B. tabaci population samples. The genetic diversity of Wolbachia of B. tabaci from Indonesia showed close relatedness and has a different clade from Wolbachia from other countries and arthropods. The population structure of Wolbachia populations from Java was genetically related and similar to that of Wolbachia from Sumatra.

##plugins.themes.bootstrap3.article.details##

References
Ahmed MZ, Li S-J, Xue X, Yin X-J, Ren S-X, Jiggins FM, Greeff JM, Qiu B-L. 2015. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathogens 11 (2): e1004672. DOI: 10.1371/journal.ppat.1004672.
Andreason SA, Shelby EA, Moss JB, Moore PJ, Moore AJ, Simmons AM. 2020. Whitefly endosymbionts: Biology, evolution, and plant virus interactions. Insects 11: 775. DOI: 10.3390/insects11110775.
Atikah A, Subandiyah S, Hartono S. 2019. Detection and Molecular Identification of Wolbachia Endosymbions in Bemisia tabaci (Hemiptera Aleyrodidae). [Thesis]. Universitas Gadjah Mada, Yogyakarta. [Indonesian]
Bigiotti G, Pastorelli R, Belcari A, Sacchetti P. 2019. Symbiosis interruption in the olive fly: Effect of copper and propolis on Candidatus erwinia dacicola. J Appl Entomol 143 (4): 357-364. DOI: 10.1111/jen.12614.
Bing X-L, Xia W-Q, Gui J-D, Yan G-H, Wang X-W, Liu S-S. 2014. Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies. Ecol Evol 4 (13): 2714-2737. DOI: 10.1002/ece3.1126.
Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M. 2007. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97 (4): 407-413. DOI: 10.1017/S0007485307005159.
de Marchi BR, Smith HA. 2020. Bacterial endosymbiont diversity among Bemisia tabaci (Hemiptera: Aleyrodidae) populations in Florida. Insects 11 (3): 179. DOI: 10.3390/insects11030179.
El Hamss H, Maruthi MN, Ally HM, Omongo CA, Wang H-L, Brunschot S, Colvin J, Delatte H. 2022. Spatio-temporal changes in endosymbiont diversity and composition in the African cassava whitefly, Bemisia tabaci SSA1. Front Microbiol 13: 986226. DOI: 10.3389/fmicb.2022.986226.
Ghosh S, Ghanim M. 2021. Factors determining transmission of persistent viruses by Bemisia tabaci and emergence of new virus-vector relationships. Viruses 13 (9): 1808. DOI: 10.3390/v13091808.
Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E. 2006. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72 (5): 3646-3652. DOI: 10.1128/aem.72.5.3646-3652.2006.
Hashmi TR, Devi SR, Ahmad A, Meshram NM, Prasad R. 2019. Genetic status and endosymbionts diversity of Bemisia tabaci (Gennadius) on hosts belonging to family Malvaceae in India. Neotrop Entomol 48: 207-218. DOI: 10.1007/s13744-018-0639-y.
Hu F-Y, Tsai C-W. 2020. Nutritional relationship between Bemisia tabaci and its primary endosymbiont, Portiera aleyrodidarum, during host plant acclimation. Insects 11: 489. DOI: 10.3390/insects11080498.
Irawan A, Ali S, Miroslav Ç, Çi?dem G, Serçe U, Ertunç F. 2023. Molecular analysis of prune dwarf virus reveals divergence within non- Turkish and Turkish viral populations. J Plant Pathol 105 (3): 943-954. DOI: 10.1007/s42161-023-01412-2.
Kanakala S, Ghanim M. 2019. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS One 14 (3): e0213946. DOI: 10.1371/journal.pone.0213946.
Kareem AA, Logan SA, Port G, Wolff K. 2020. Bemisia tabaci in Iraq: Population structure, endosymbiont diversity and putative species. J Appl Entomol 144 (4): 297-307. DOI: 10.1111/jen.12736.
Karut K, Castle SJ, Karut ?T, Karaca MM. 2020. Secondary endosymbiont diversity of Bemisia tabaci and its parasitoids. Infec Genet Evol 78: 104104. DOI: 10.1016/j.meegid.2019.104104.
Khatun MF, Jahan SMH, Lee S, Lee KY. 2018. Genetic diversity and geographic distribution of the Bemisia tabaci species complex in Bangladesh. Acta Trop 187: 28-36. DOI: 10.1016/j.actatropica.2018.07.021.
Lestari SM, Hidayat P, Hidayat SH, Shim JK, Lee KY. 2021. Bemisia tabaci in Java, Indonesia: Genetic diversity and the relationship with secondary endosymbiotic bacteria. Symbiosis 83: 317-333. DOI: 10.1007/s13199-021-00752-w.
Li S-J, Ahmed MZ, Lv N, Shi P-Q, Wang X-M, Huang J-L, Qiu B-L. 2017. Plant mediated horizontal transmission of Wolbachia between whiteflies. ISME J 11 (4): 1019-1028. DOI: 10.1038/ismej.2016.164.
Liu X-D, Guo H-F. 2019. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Curr Opin Insect Sci 33: 84-90. DOI: 10.1016/j.cois.2019.05.003.
Lv N, Peng J, He Z-Q, Wen Q, Su Z-Q, Ali S, Liu C-Z, Qiu B-L. 2023. The dynamic distribution of Wolbachia and Rickettsia in AsiaII1 Bemisia tabaci. Insects 14 (4): 401. DOI: 10.3390/insects14040401.
Milenovic M, Ghanim M, Hoffmann L, Rapisarda C. 2022. Whitefly endosymbionts: IPM opportunity or tilting at windmills. J Pest Sci 95 (2): 543-566. DOI: 10.1007/s10340-021-01451-7.
Mitsuhashi W, Saiki T, Wei W, Kawakita H, Sato M. 2002. Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Mol Biol 11 (6): 577-584. DOI: 10.1046/j.1365-2583.2002.00368.x.
Opatovsky I, Santos GD, Ruan Z, Lahav T, Ofaim S, Mouton L, Barbe V, Jiang J, Zchori-Fein E, Freilich S. 2018. Modeling trophic dependencies and exchanges among insects' bacterial symbionts in a host-simulated environment. BMC Genom 19: 402. DOI: 10.1186/s12864-018-4786-7.
Pan H, Li X, Ge D, Wang S, Wu Q, Xie W, Jiao X, Chu D, Liu B, Xu B, Zhang Y. 2012. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS One 7 (2): e30760. DOI: 10.1371/journal.pone.0030760.
Rao Q, Rollat-Farnier P-A, Zhu D-T, Santos-Garcia D, Silva FJ, Moya A, Latorre A, Klein CC, Vavre F, Sagot M-F, Liu S-S, Mouton L, Wang X-W. 2015. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics 16: 226. DOI: 10.1186/s12864-015-1379-6.
Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N. 2020. A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic Fungi. Insects 11 (9): 619. DOI: 10.3390/insects11090619.
Singh ST, Priya NG, Kumar J, Rana VS, Ellango R, Joshi A, Priyadarshini G, Asokan R, Rajagopal R. 2012. Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening. Infec Genet Evol 12 (2): 411-419. DOI: 10.1016/j.meegid.2012.01.015.
Temaja IGRM, Selangga DGW, Phabiola TA, Khalimi K, Listihani L. 2022. Relationship between viruliferous Bemisia tabaci population and disease incidence of Pepper yellow leaf curl Indonesia virus in chili pepper. Biodiversitas 23: 5360-5366. DOI: 10.13057/biodiv/d231046.
Weeks AR, Robert V, Richard S. 2003. Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc Biol Sci 270 (1526): 1857-1865. DOI: 10.1098/rspb.2003.2425.
Xue X, Li S-J, Ahmed MZ, De Barro PJ, Ren S-X, Qiu B-L. 2012. Inactivation of Wolbachia Reveals Its Biological Roles in Whitefly Host. PLoS One 7 (10): e48148. DOI: 10.1371/journal.pone.0048148.
Zchori-Fein E, Brown JK. 2002. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 95: 711-718. DOI: 10.1603/0013-8746(2002)095[0711:DOPAWB]2.0.CO;2.
Zhong Y, Li Z-X. 2014. Bidirectional cytoplasmic incompatibility induced by cross-order transfection of Wolbachia: Implications for control of the host population. Microb Ecol 68: 463-471. DOI: 10.1007/s00248-014-0425-2.
Zhou X-F, Li Z-X. 2016. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect. Sci Rep 6: 39200. DOI: 10.1038/srep39200.
Zhu D-T, Zou C, Ban F-X, Wang H-L, Wang X-W, Liu Y-Q. 2019. Conservation of transcriptional elements in the obligate symbiont of the whitefly Bemisia tabaci. Peer J 7: e7477. DOI: 10.7717/peerj.7477.

Most read articles by the same author(s)