Natural tree regeneration after selective cutting in a dry evergreen forest in Northeastern Thailand

##plugins.themes.bootstrap3.article.main##

DOKRAK MAROD
SARAWOOD SUNGKAEW
SATHID THINKAMPAENG
CHONGRAK WACHRINRAT
SUTHERA HERMHUK
KKAPHONG THONGSAWI
WONGSATORN PHUMPHUANG
ARERUT YARNVUDHI
CHATPIMUK YATAR
SOMBOON CHEYSAWAT
CHATCHAI SAWASMONGKOL

Abstract

Abstract. Marod D, Sungkaew S, Thinkampaeng S, Wachrinrat C, Hermhuk S, Thongsawi J, Phumphuang W, Yarnvudhi A, Yatar C, Cheysawat S, Sawasmongkol C. 2024. Natural tree regeneration after selective cutting in a dry evergreen forest in Northeastern Thailand. Biodiversitas 25: 4074-4085. Forest degradation is a serious problem caused by anthropogenic disturbance, nevertheless, forest recovery rates vary among forest ecosystems. We investigated forest regeneration after selective cutting in a dry evergreen forest at the Wang Nam Khiao Forestry Research and Training Station (WFRS), Nakhon Ratchasima Province, Thailand. In 2002, a 1-ha permanent plot was established in the forest. All woody plant (sapling and trees) in the plot with Diameter at Breast Height (DBH) >2 cm were identified, and their DBHs and positions were recorded. Data on environmental and topographic factors and soil properties were collected to analyze their relationships with tree spatial distribution. Tree monitoring was conducted in 2004, 2018, and 2020 and forest dynamics were analyzed for the periods 2002-2004, 2004-2018, and 2018-2020. In 2020, we identified 3,669 trees of 91 species, 81 genera, and 36 families. Based on importance index values, the dominant tree species (all with DBH ?4.5 cm) were Walsura pinnata Hassk., Dialium cochinchinense Pierre, Hopea ferrea Laness., Hydnocarpus ilicifolius King and Vitex scabra Wall. ex Schauer. Based on the DBH class distribution, the natural regeneration of all woody plants tended toward a reverse J-shaped, indicating a good regeneration condition. The results of forest dynamics analysis showed that the net recruitment rate (2.75±1.70% year-1) was higher than the mortality rate (2.14±0.73% year-1) throughout the study period. Tree spatial distributions varied among species and across environmental factors which were strongly influenced by soil texture followed by topographic and can be divided into generalist and specialist species. This indicates that the forest is going toward a positive regeneration trajectory after the disturbances. Nonetheless, additional information based on forest monitoring is required. Additionally, an understanding of the relationships between species niches and environmental changes is important for tree regeneration research and forest restoration programs; it will allow better matching of tree species to their optimal environmental conditions, thereby increasing the likelihood of plant community success.

##plugins.themes.bootstrap3.article.details##

References
Allison LE. 1965. Organic carbon. In: Black C, Evans D, White J, Ensminger L, Clark F, Dinauer D (eds). Method of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison (WI), USA.
Bageel A, Honda MDH, Carrillo JT, Borthakur D. 2020. Giant leucaena (Leucaena leucocephala subsp. glabrata): A versatile tree-legume for sustainable agroforestry. Agrofor Syst 94: 251-268. DOI: 10.1007/s10457-019-00392-6.
Bageel AM, Borthakur D. 2022. The effects of pH, salinity, age of leaves, post-harvest storage duration, and psyllid infestation on nutritional qualities of giant leucaena fodder. J Crop Sci Biotechnol 25: 381-392. DOI: 10.1007/s12892-021-00139-9.
Beck R. 1999. Soil Analysis Handbook of Reference Methods. CRC Press Soil and Plant Analysis Council, Inc, USA.
Beguería S, Vicente?Serrano SM, Reig F, Latorre B. 2014. Standardized Precipitation Evapotranspiration Index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Intl J Climatol 34 (10): 3001-3023. DOI: 10.1002/joc.3887.
Brancalion PHS, Niamir A, Broadbent E, Crouzeilles R, Barros FSM, Almeyda Zambrano AM, Baccini A, Aronson J, Goetz S, Reid JL, Strassburg BBN, Wilson S, Chazdon RL. 2019. Global restoration opportunities in tropical rainforest landscapes. Sci Adv 5 (7): eaav3223. DOI: 10.1126/sciadv.aav3223.
Denelle P, Violle C, Consortium D, Munoz F. 2020. Generalist plants are more competitive and more functionally similar to each other than specialist plants: Insights from network analyses. J Biogeogr 47 (9): 1922-1933. DOI: 10.1111/jbi.13848.
Dharmawan IWS, Heriyanto NM, Garsetiasih R, Kwatrina RT, Sawitri R, Denny, Setyawati T, Pratiwi, Narendra BH, Siregar CA, Abywijaya IK. 2024. The dynamics of vegetation structure, composition and carbon stock in peatland ecosystem of old secondary forest in Riau and South Sumatra Provinces. Land 13 (5): 663. DOI: 10.3390/land13050663.
Diaz-Soltero H. 2022. Global identification of invasive species: The CABI invasive species compendium as a resource. In: Invasive species and global climate change. CABI Digital Library. DOI: 10.1079/9781800621459.0013.
Elliott S, Tucker NIJ, Shannon DP, Tiansawat P. 2022. The framework species method: Harnessing natural regeneration to restore tropical forest ecosystems. Philos Trans R Soc Lond B Biol Sci 378 (1867): 20210073. DOI: 10.1098/rstb.2021.0073.
Furtado AG, Sims LP, de Campos Franci L, Pereira L, Haddad CRB, Martins FR. 2017. How a non-pioneer tree attains the canopy of a tropical semideciduous forest. Trees 31: 93-103. DOI: 10.1007/s00468-016-1458-6.
Gaiser EE, Bell DM, Castorani MCN, Childers DL, Groffman PM, Jackson CR, Kominoski JS, Peters DPC, Pickett STA, Ripplinger J, Zinnert JC. 2020. Long-term ecological research and evolving frameworks of disturbance ecology. Bioscience 70 (2): 141-156. DOI: 10.1093/biosci/biz162.
Goodale UM, Berlyn GP, Gregoire TG, Tennakoon KU, Ashton MS. 2014. Differences in survival and growth among tropical rain forest pioneer tree seedlings in relation to canopy openness and herbivory. Biotropica 46 (2): 183-193. DOI: 10.1111/btp.12088.
Guisan A, Weiss SB, Weiss AD. 1999. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143: 107-122. DOI: 10.1023/A:1009841519580.
Joshi RK, Dhyani S. 2019. Biomass, carbon density and diversity of tree species in tropical dry deciduous forests in Central India. Acta Ecol Sin 39 (4): 289-299. DOI: 10.1016/j.chnaes.2018.09.009.
Lewis SL, Edwards DP, Galbraith D. 2015. Increasing human dominance of tropical forests. Science 349 (6250): 827-832. DOI: 10.1126/science.aaa9932.
Liu Q, Sterck FJ, Zhang J-L, Poorter L. 2023. Abiotic and biotic drivers of liana community change in an Asian tropical rainforest. For Ecol Manag 545: 121261. DOI: 10.1016/j.foreco.2023.121261.
Marod D, Duengkae P, Kutintara U, Sungkaew S, Wachrinrat C, Asanok L, Klomwattanakul N. 2012. The influences of an invasive plant species (Leucaena leucocephala) on tree regeneration in Khao Phuluang Forest, Northeastern Thailand. Kasetsart J-Nat Sci 46 (1): 39-50.
Marod D, Duengkae P, Sangkaew S, Racharak P, Suksavate W, Uthairatsamee S, Asanok L, Kamyo T, Thinkampheang S, Heumhuk S, Kachina P, Thongsawi J, Phumpuang W, Paansri P, Nuipakdee W, Nakmuenwai P, Pattanakiat S. 2022. Population structure and spatial distribution of tree species in Lower Montane Forest, Doi Suthep-Pui National Park, Northern Thailand. Environ Nat Resour J 20 (6): 644-663. DOI: 10.32526/ennrj/20/202200139.
Marod D, Hermhuk S, Sungkaew S, Thinkampheang S, Kamyo T, Nuipakdee W. 2019. Species composition and spatial distribution of dominant trees in the Forest Ecotone of a Mountain Ecosystem, Northern Thailand. Environ Nat Resour J 17 (3): 40-49. DOI: 10.32526/ennrj.17.3.2019.21.
Memiaghe HR, Lutz JA, Korte L, Alonso A, Kenfack D. 2016. Ecological importance of small-diameter trees to the structure, diversity and biomass of a tropical evergreen forest at Rabi, Gabon. PLoS One 11 (5): e0154988. DOI: 10.1371/journal.pone.0154988.
Morgenroth J, Nowak DJ, Koeser AK. 2020. DBH distributions in America’s urban forests-An overview of structural diversity. Forests 11 (2): 135. DOI: 10.3390/f11020135.
Phumphuang W, Marod D, Sungkaew S, Thinkampaeng S. 2018. Forest dynamics and tree distribution patterns in Dry Evergreen Forest, Northeastern, Thailand. Environ Nat Resour J 16 (2): 58-67.
Phumphuang W, Sungkaew S, Wachrinrat C, Thinkampheang S, Hermhuk S, Thongsawi J, Waengsothorn S, Lin L, Marod D. 2024. Environmental factors differentially influence species distributions across tree size classes in a dry evergreen forest in Sakaerat Biosphere Reserve, Northeastern Thailand. J For Res 29 (4): 297-305. DOI: 10.1080/13416979.2024.2314834.
Phumsathan S, Daonurai K, Kraichak E, Sungkaew S, Teerawatananon A, Pongpattananurak N. 2022. Effects of fire on diversity and aboveground biomass of understory communities in seasonally dry tropical forest in Western Thailand. Sustainability 14 (22): 15067. DOI: 10.3390/su142215067.
Picard N. 2019. Asymmetric competition can shape the size distribution of trees in a natural tropical forest. For Sci 65 (5): 562-569. DOI: 10.1093/forsci/fxz018.
Poorter L, Craven D, Jakovac CC et al. 2021. Multidimensional tropical forest. Science 374 (6573): 1370-1376. DOI: 10.1126/science.abh3629.
Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E. 2017. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3 (1): e1600821. DOI: 10.1126/sciadv.1600821.
Raven PH, Wagner DL. 2021. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc Natl Acad Sci USA 118 (2): e2002548117. DOI: 10.1073/pnas.2002548117.
Rebola LC, Paz CP, Gamarra LV, Burslem DFRP. 2021. Land use intensity determines soil properties and biomass recovery after abandonment of agricultural land in an Amazonian biodiversity hotspot. Sci Total Environ 801: 149487. DOI: 10.1016/j.scitotenv.2021.149487.
Revilla US, Peña-Claros M, López-Mendoza RD, Meave JA, Bongers F. 2024. Crown cover of a dominant pioneer legume affects tree species regeneration in a secondary tropical dry forest. Bot Sci 102 (3): 686-697. DOI: 10.17129/botsci.3382.
Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB. 2017. Package “mass”. Cran R 538: 113-120.
Saiful I, Latiff A. 2017. Stand profile topography of a primary hill dipterocarp forest in Peninsular Malaysia. J Trop For Sci 29: 137-150.
Saikhammoon R, Sungkaew S, Thinkampaeng S, Phumphuang W, Kamyo T, Marod D. 2023. Forest restoration in an abandoned seasonally dry tropical forest in the Mae Klong Watershed, Western Thailand. Environ Nat Resour J 21 (5): 443-457. DOI: 10.32526/ennrj/21/20230121.
Sherman RE, Fahey TJ, Martin PH, Battles JJ. 2012. Patterns of growth, recruitment, mortality and biomass across an altitudinal gradient in a neotropical montane forest, Dominican Republic. J Trop Ecol 28 (5): 483-495. DOI: 10.1017/s0266467412000478.
Smitinand T. 2014. Thai Plant Names. Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand.
Soil Science Division Staff. 2017. Soil Survey Manual: United States Department of Agriculture Handbook No.18. United States Department of Agriculture, USA.
Sulaiman C, Abdul-Rahim AS. 2015. Logging ban policy and its impact on international trade in forest products: The case of Thailand. Intl J Green Econ 9 (3/4): 242. DOI: 10.1504/ijge.2015.075195.
Swinfield T, Afriandi R, Antoni F, Harrison RD. 2016. Accelerating tropical forest restoration through the selective removal of pioneer species. For Ecol Manag 381: 209-216. DOI: 10.1016/j.foreco.2016.09.020.
Velázquez E, Wiegand T. 2020. Competition for light and persistence of rare light?demanding species within tree?fall gaps in a moist tropical forest. Ecology 101 (7): e03034. DOI: 10.1002/ecy.3034.
Vicente-Serrano SM, Beguería S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J Clim 23 (7): 1696-1718. DOI: 10.1175/2009jcli2909.1.

Most read articles by the same author(s)

1 2 > >>