Evaluation of doubled haploid rice lines for agronomic performance and resistance to bacterial leaf blight

##plugins.themes.bootstrap3.article.main##

ISWARI SARASWATI DEWI
RATNA KARTIKA PUTRI
BAMBANG SAPTA PURWOKO
SITI YURIYAH
ISKANDAR LUBIS

Abstract

Abstract. Dewi IS, Putri RK, Purwoko BS, Yuriyah S, Lubis I. 2024. Evaluation of doubled haploid rice lines for agronomic performance and resistance to bacterial leaf blight. Biodiversitas 25: 4275-4283. The dynamic of climate change aggravates the adverse effect of biotic stress. The biotic stresses affecting rice fields include bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo). This research evaluated the agronomic performance and resistance of doubled haploid (DH) rice lines against three dominant Xoo pathotypes in Indonesia (i.e., pathotype groups III, IV, and VIII). Nineteen rice genotypes consisting of 14 advanced DH lines, two commercial varieties (Ciherang and Inpari 18), and three BLB checks (IRBB-66 as resistant check, IR-64 and TN-1 as susceptible check) were assessed against three dominant Xoo pathotypes in Indonesia following the SES for rice from IRRI. Results indicated that 11 DH lines, except M-1, M-4, and M-14 had good agronomic traits, including productivity over 8 tons ha-1, significantly higher than Inpari 18. The varying severity of BLB was influenced considerably by pathotype, genotype, and pathotype-genotype interaction. The disease severity from each pathotype was relatively the same across two inoculation times (vegetative and generative phase). In both growth phases, all DH rice lines, except for M-5 and M-13 were categorized as resistant against pathotypes III and IV. These findings have practical implications for developing disease-resistant rice varieties, enhancing the relevance and applicability of the research.

##plugins.themes.bootstrap3.article.details##

References
Alvarez-Martinez CE, Sgro GG, Araujo GG, Paiva MRN, Matsuyama BY, Guzzo CR, Andrade M, Farah CS. 2021. Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 19: 279-302. DOI: 10.1016/j.csbj.2020.12.020.
Amin T, Gupta V, Sharma A, Rai PK, Razdan VK, Sharma SK, Singh SK, Lone JA, Yaqoob M, Singh B, Gupta SK. 2023. Distribution of Xanthomonas oryzae pv. oryzae pathotypes in basmati-rice-growing areas of Jammu and Kashmir, India. Agronomy 13 (3): 713. DOI: 10.3390/agronomy13030713.
Ansari TH, Ahmed M, Akter S, Mian MS, Latif MA, Tomita M. 2019. Estimation of rice yield loss using a simple linear regression model for bacterial blight disease. Bangladesh Rice J 23 (1): 73-79. DOI: 10.3329/brjv23i1.46083.
Ashwini S, Prashanthi SK, Vidyashankar D, Hegde YR, Krishnaraju PU, Muttappagol M, Krishnanand I. 2024. Insights into the virulence profiles and molecular diversity of Xanthomonas oryzae pv. oryzae isolates associated with bacterial blight of rice in major districts of Karnataka, India. Physiol Mol Plant Pathol 11: 102338. DOI: 10.1016/j.pmpp.2024.102338.
Bakade R, Ingole KD, Deshpande S, Pal G, Patil SS, Bhattacharjee S, Prasannakumar MK, Ramu VS. 2021. Comparative transcriptome analysis of rice resistant and susceptible genotypes to Xanthomonas oryzae pv. oryzae identifies novel genes to control bacterial leaf blight. Mol Biotechnol 63 (8): 719-731. DOI: 10.1007/s12033-021-00338-3.
BBPOPT [Balai Besar Peramalan Organisme Pengganggu Tumbuhan]. 2023. Evaluation of Forecasting Major Pest Attacks on Rice, Corn, and Soybean in Indonesia for the 2022/2023 Growing Season. Indonesian Center for Plant Pest Organism Forecasting, Directorate General of Food Crops, Ministry of Agriculture of the Republic of Indonesia, Jakarta. [Indonesian]
Chattopadhyay C, Birah A, Jalali BL. 2019. Climate change: Impact on biotic stresses affliating crop plants. In: Peshin R, Dhawan AK (eds). Natural Resource Management: Ecological Perspectives Sustainability in Plant and Crop Protection. Springer, Jammu. DOI: 10.1007/978-3-319-99768-1_8.
Chen S, Wang C, Yang J, Chen B, Zhu X. 2020. Identification of the novel bacterial blight resistance genes Xa 46(t) by mapping and expression analysis of the rice mutant H 129. Sci Rep 10 (1): 12642. DOI: 10.1038/s41598-020-69639-y.
Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z. 2021. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun 2 (3): 100143. DOI: 10.1016/j.xplc.2021.100143.
Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, Magaji UG, Akos I, Olalekan KK. 2019. Bacterial leaf blight resistance in rice: A review of conventional breeding to molecular approach. Mol Biol Rep 46 (1): 1519-1532. DOI: 10.1007/s11033-019-04584-2.
Cottrell RS, Nash KL, Halpern BS, Remenyi TA, Corney SP, Fleming A, Fulton EA, Hornborg S, Johne A, Watson RA, Blanchard JL. 2019. Food production shocks across land and sea. Nat Sustain 2 (2): 130-137. DOI: 10.1038/s41893-018-0210-1.
Curutiu C, Lazar V, Chifiriuc MC. 2017. Pesticides and antimicrobial resistance: From environmental compartments to animal and human infections. In: Grumezescu AM (ed.). New Pesticides and Soil Sensors. Academic Press, Bucharest. DOI: 10.1016/B978-0-12-804299-1.00011-4.
Diallo A, Wonni I, Sicard A, Blondin L, Gagnevin L, Vernière C, Szurek B, Hutin M. 2023. Genetic structure and TALome analysis highlight a high level of diversity in burkinabe Xanthomonas oryzae pv. oryzae populations. Rice 16 (1): 33. DOI: 10.1186/s12284-023-00648-x.
Du XX, Park JR, Wang XH, Jan R, Lee GS, Kim KM. 2022. Genotype and phenotype interaction between OsWKRYq6 and BLB after Xanthomonas oryzae pv. oryzae inoculation in the field. Plants 11 (3): 287. DOI: 10.3390/plants11030287.
Fiyaz RA, Shivani D, Chaithanya K, Mounika K, Chiranjeevi M, Laha GS, Viraktamath BC, Rao LVS, Sundaram RM. 2022. Genetic improvement of rice for bacterial blight resistance: Present status and future prospects. Rice Sci 29: 118-132. DOI: 10.1016/j.rsci.2021.08.002.
Flor HH. 1971. Current status of the gene-for-gene concept. Annu Rev Phytopathol 9: 275-296. DOI: 10.1146/annurev.py.09.090171.001423.
Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. 2017. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants 3 (3): 17009. DOI: 10.1038/nplants.2017.9.
Hunjan MS, Lore JS. 2020. Climate change: impact on plant pathogens. diseases and their management. In: Jabran K, Florentine S, Chauhan BS (eds). Crop Protection Under Changing Climate. Springer, Cham. DOI: 10.1007/978-3-030-46111-9.
IRRI [International Rice Research Institute]. 2013. SES Standard Evaluation System for Rice. International Rice Research Institute, Manila.
Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J. 2020. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.): An updated review. Rice 13: 3. DOI: 10.1186/s12284-019- 0358-y.
Joshi JB, Arul L, Ramalingam J, Uthandi S. 2020. Advances in the Xoo-rice pathosystem interaction and its exploitation in disease management. J Biosci 45 (1): 112. DOI: 10.1007/s12038-020-00085-8.
Kanipriya R, Ramanathan A, Gopalakrishnan C, Ramalingam J, Saraswathi R. 2024. Pathotyping and virulence analysis of Xanthomonas oryzae pv. oryzae causing bacterial blight of rice in Tamil Nadu. Agric Sci Digest 44 (2): 282-288. DOI: 10.18805/ag.D-5828.
Kartina N, Purwoko BS, Dewi IS, Wirnas D, Sugiyanta. 2019. Genotype by environment interaction and yield stability analysis of doubled haploid lines of upland rice. SABRAO J Breed Genet 51 (2): 191-204.
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS and Sundaram RM. 2020. Deployment of genetic and genomic tools toward gaining a better understanding of rice-Xanthomonas oryzae pv. oryzae interactions for development of durable bacterial blight resistant rice. Front Plant Sci 11: 1152. DOI: 10.3389/fpls.2020.01152.
Liu M, Shi Z, Zhang X, Wang M, Zhang L, Zheng K, Liu J, Hu X, Di C, Qian Q, He Z. 2019. Inducible overexpression of ideal plant architecture improves both yield and disease resistance in rice. Nat Plants 5 (4): 389-400. DOI: 10.1038/s41477-019-0383-2.
Nandal K, Sehrawat AR, Yadav AS, Vashishat RK, Boora KS. 2005. High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbiol Res 160 (4): 367-373. DOI: 10.1016/j.micres.2005.02.011.
Naqvi SA. 2019. Bacterial leaf blight of rice: An overview of epidemiology and management with special reference to Indian sub-continent. Pak J Agric Res 32 (2): 359-380. DOI: 10.17582/journal.pjar/2019/32.2.359.380.
Noor A, Chaudhry Z, Rashid H, Mirza B. 2006. Evaluation of resistance of rice varieties against bacterial blight caused by Xanthomonas oyzae pv. oryzae. Pak J Bot 38 (1): 193-203.
Oshunsanya SO, Nwosu NJ, Li Y. 2019. Abiotic stress in agricultural crops under climatic conditions. In: Jhariya M, Banerjee A, Meena R, Yadav D (eds). Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. DOI: 10.1007/978-981-13-6830-1_3.
Pradhan KC, Pandit E, Mohanty SP, Moharana A, Sanghamitra P, Meher J, Jena BK, Dash PK, Behera L, Mohapatra PM, Bastia DN. 2022. Development of broad spectrum and durable bacterial blight resistant variety through pyramiding of four resistance genes in rice. Agronomy 12 (8): 1903. DOI: 10.3390/agronomy12081903.
Pradhan SK, Barik SR, Nayak DK, Pradhan A, Pandit E, Nayak P, Das SR, Pathak H. 2020. Genetics, molecular mechanism, and deployment of bacterial blight resistance genes in rice. Crit Rev Plant Sci 39 (4): 360-385. DOI: 10.1080/07352689.2020.1801559.
Putri RK, Purwoko BS, Dewi IS, Lubis I, Yuriyah, S. 2023. Resistance of doubled haploid rice lines to bacterial leaf blight (Xanthomonas oryzae pv. oryzae). Sabrao J Breed Genet 55 (3): 717-728. DOI: 10.54910/sabrao2023.55.3.10.
Rashid MM, Nihad SA, Khan MA, Haque A, Ara A, Ferdous T, Hasan MA, Latif MA. 2021. Pathotype profiling: Distribution and virulence analysis of Xanthomonas oryzae pv. oryzae causing bacterial blight disease of rice in Bangladesh. J Phytopathol 169 (7-8): 438-446. DOI: 10.1111/jph.13000.
Rumanti IA, Nugraha Y, Wening RH, Gonzaga ZJC, Suwarno, Nasution A, Kusdiaman D, Septianingsih EM. 2016. Development of high-yielding rice varieties suitable for swampy lands in Indonesia. Plant Breed Biotechnol 4 (4): 413-425. DOI: 10.9787/PBB.2016.4.4.413.
Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3 (3): 430-439. DOI: 10.1038/s41559-018-0793-y.
Shamsunnaher, Chen X, Zhang X, Wu X, Huang X, Song W. 2020. Rice immune sensor XA21 diferentially enhances plant growth and survival under distinct levels of drought. Sci Rep 10 (1): 16938. DOI: 10.1038/s41598-020-73128-7.
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. 2022. Future of bacterial disease management in crop production. Annu Rev Phytopathol 60 (1): 259-282. DOI: 10.1146/annurev-phyto-021621-121806.
Skendži? S, Zovko M, Živkovi?, IP, Leši? V, Lemi? D. 2021. The impact of climate change on agricultural insect pests. Insects 12 (5): 440. DOI: 10.3390/insects12050440.
Sudir, Yuliani D. 2016. Composition and distribution of Xanthomonas oryzae pv. oryzae pathotypes, the pathogen of rice bacterial leaf blight in Indonesia. Agrivita J Agric Sci 38 (2): 174-185. DOI: 10.17503/agrivita.v38i2.588.
Surówka E, Rapacz M, Janowiak F. 2020. Climate change influences the interactive effects of simultaneous impact of abiotic and biotic stresses on plants. In: Hasanuzzaman M (eds). Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore. DOI: 10.1007/978-981-15-2156-0_1.
Suryadi Y, Kadir TS. 2017. Pathogenicity of Xanthomonas oryzae pv. oryzae isolates and bacterial leaf blight disease monitoring on rice-near isogenic lines (NILs). Berita Biologi 16 (2): 193-202. DOI: 10.14203/beritabiologi.v16i2.2393. [Indonesian]
Suryadi Y, Samudra MI, Priyatno TP, Susilowati DN, Lestari P, Fatimah, Kadir TS. 2016. Determination of pathotypes from Indonesian Xanthomonas oryzae pv. oryzae population causing bacterial leaf blight and their reactions on differential rice. Makara J Sci 20 (3): 109-118. DOI: 10.7454/mss.v20i3.6241.
Sutrisno, Susanto FA, Wijayanti P, Retnoningrum MD, Nuringtyas TR, Joko T, Purwestri YA. 2018. Screening of resistant Indonesian black rice cultivars against bacterial leaf blight. Euphytica 214 (11): 199-210. DOI: 10.1007/s10681-018-2279-z.
Teshome DT, Zharare GE, Naidoo S. 2020. The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front Plant Sci 11: 601009. DOI: 10.3389/fpls.2020.601009.
Ullah I, Ali H, Mahmood T, Khan MN, Haris M, Shah H, Mihoub A, Jamal A, Saeed MF, Mancinelli R, Radicetti E. 2022. Pyramiding of four broad spectrum bacterial blight resistance genes in cross breeds of basmati rice. Plants 12 (1): 46. DOI: 10.3390/plants12010046.
Xing J, Zhang D, Yin F, Zhong Q, Wang B, Xiao S, Ke X, Wang L, Zhang Y, Zhao C, Lu Y, Chen L, Chen Z, Chen L. 2021. Identifcation and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of Yuanjiang common wild rice (Oryza rufpogon). Plant Dis 105 (12): 4106-4112. DOI: 10.1094/PDIS-05-21-0939-RE.
Xu R, Zhou J, Zheng E, Yang Y, Li D, Chen Y, Yan C, Chen J, Wang X. 2021. Systemic acquired resistance plays a major role in bacterial blight resistance in a progeny of somatic hybrids of cultivated rice (Oryza sativa L.) and wild rice (Oryza meyeriana L.). J Plant Dis Protect 128: 1023-1040. DOI: 10.1007/s41348-021-00457-8.
Xu YP, Lv LH, Xu YJ, Yang J, Cao JY, Cai XZ. 2018. Leaf stage?associated resistance is correlated with phytohormones in a pathosystem?dependent manner. J Integr Plant Biol 60 (8): 703-722. DOI: 10.1111/jipb.12661.
Yadi R, Heravan IM, Sharifabad HH. 2021. Identifying the superior traits for selecting the ideotype of rice cultivars. Cereal Res Commun 49: 475-484. DOI: 10.1007/s42976-020-00088-z.
Yang Y, Zhou Y, Sun J, Liang W, Chen X, Wang X, Zhou J, Yu C, Wang J, Wu S, Yao X, Zhou Y, Zhu J, Yan C, Zheng B, Chen J. 2022. Research progress on cloning and function of xa genes against rice bacterial blight. Front Plant Sci 13: 847199. DOI: 10.3389/fpls.2022.847199.
Yimer HZ, Nahar K, Kyndt T, Haeck A, Van Meulebroek L, Vanhaecke L, Demeestere K, Höfte M, Gheysen G. 2018. Gibberellin antagonizes jasmonate?induced defense against Meloidogyne graminicola in rice. New Phytol 218 (2): 646-660. DOI: 10.1111/nph.15046.
Yuriyah S, Utami DW, Hanarida I. 2013. Resistance test of promising rice lines against bacterial leaf blight (Xanthomonas oryzae pv. oryzae) Race III, IV, and VIII. Bull Plasma Nutfah 19 (2): 53-60. DOI: 10.21082/blpn.v19n2.2013.p53-60. [Indonesian]
Yuriyah S, Utami DW. 2015. Genetic diversity of Indonesian bacterial leaf blight isolate (Xanthomonas oryzae pv. oryzae) core collection based on the VNTR and avrXa7 molecular markers. Makara J Sci 19 (3): 6. DOI: 10.754/MSS.V19I3.4893.
Zhang J, Yin Z, White F. 2015. TAL effectors and the executor R genes. Front Plant Sci 6: 641. DOI: 10.3389/fpls.2015.00641.
Zhong Q, Xu Y, Rao Y. 2024. Mechanism of rice resistance to bacterial leaf blight via phytohormones. Plants 13 (18): 2541. DOI: 10.3390/plants13182541.

Most read articles by the same author(s)