Fungi biodiversity during biorefinery of oil palm waste

##plugins.themes.bootstrap3.article.main##

RORO KESUMANINGWATI
RUDY AGUNG NUGROHO
https://orcid.org/0000-0001-9006-7329
SURYA DARMA
https://orcid.org/0000-0001-9006-7329
FAHRUNSYAH
https://orcid.org/0000-0003-4521-3299
KRISHNA PURNAWAN CANDRA
https://orcid.org/0000-0003-1358-1329
ESTI HANDAYANI HARDI
https://orcid.org/0000-0002-4660-7532
SURIA DARMA

Abstract

Abstract. Kesumaningwati R, Nugroho RA, Darma S, Fahrunsyah, Candra KP, Hardi EH, Darma S. 2024. Fungi biodiversity during biorefinery of oil palm waste. Biodiversitas 25: 3596-3607. The rapidly growing palm oil industry faces significant waste management challenges that necessitate improvements in the biorefinery processes. This study aimed to determine the diversity of fungi during the biorefinery process of oil palm waste. An optimization study was conducted utilizing Response Surface Methodology (RSM) based on the Box-Behnken experimental design. We examined four factors: the bioactivator, Oil Palm Empty Fruit Bunches (OPEFB), Palm Oil Mill Effluent (POME), and the composting time in a 3 kg biorefinery system. The results revealed 16 and 21 types of fungi at the genus and species levels, respectively. The biodiversity indices, specifically the Simpson (D) and Shannon (H’), reflected shifts in fungal diversity throughout the biorefinery process. The indices at the genus level peaked in the middle of the biorefinery (day 24.5, indicating the highest diversity) with low (D=0.085-0.154) and medium (H’=1.992-2.671) values. On day 7, the compost temperature was 34.98°C, declining to 29.50 and 28.82°C on days 24.5 and 42, respectively. Aspergillaceae and Rhizopodaceae were the two dominant families involved in the composting process, with Aspergillus, Fusarium, and Rhizopus being the predominant genera. At the species level, Aspergillus flavus Link, Aspergillus fumigatus Fresen., Aspergillus niger Tiegh., and Rhizopus sp. were fully engaged during the composting process. OPEFB concentration and composting time significantly influenced the compost C/N ratio, as did the interaction between composting time and the other two factors (EM4 volume and OPEFB). The optimal composting conditions were determined to be: EM4 volume of 15 mL, OPEFB at 30.895%, POME at 59.989%, and a composting time of seven days. The resulting compost exhibited a C/N ratio of 19.084, moisture content of 49.999%, C-organic content of 72.595%, N-total of 3.791%, and K-total of 5.867%, with a desirability of 77.6%.

##plugins.themes.bootstrap3.article.details##

References
Adetunji AI, Oberholster PJ, Erasmus M. 2023. From garbage to treasure: A review on biorefinery of organic solid wastes into valuable biobased products. Bioresour Technol Rep 24: 101610. DOI: 10.1016/j.biteb.2023.101610.
Aguilar-Paredes A, Valdés G, Araneda N, Valdebenito E, Hansen F, Nuti M. 2023. Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 13 (2): 542. DOI: 10.3390/agronomy13020542.
Alkarimiah R, Suja F. 2020. Composting of EFB and POME using a step-feeding strategy in a rotary drum reactor: The effect of active aeration and mixing ratio on composting performance. Pol J Environ Stud 29 (4): 2543-2553. DOI: 10.15244/pjoes/110518.
Awoh ET, Kiplagat J, Kimutai SK, Mecha AC. 2023. Current trends in palm oil waste management: A comparative review of Cameroon and Malaysia. Heliyon 9 (11): e21410. DOI: 10.1016/j.heliyon.2023.e21410.
Azman NF, Katahira T, Nakanishi Y, Chisyaki N, Uemura S, Yamada M, Takayama K, Oshima I, Yamaguchi T, Hara H, Yamauchi M. 2023. Sustainable oil palm biomass waste utilization in Southeast Asia: Cascade recycling for mushroom growing, animal feedstock production, and composting animal excrement as fertilizer. Cleaner and Circular Bioeconomy 6: 100058. DOI: 10.1016/j.clcb.2023.100058.
Bakar NASA, Khuzaini NA, Baidurah S. 2022. Co-fermentation involving Lysinibacillus sp. and Aspergillus flavus for simultaneous palm oil waste treatment and renewable biomass fuel production. AIMS Microbiol 8 (3): 357-371. DOI: 10.3934/microbiol.2022025.
Chojnacka K. 2023. Valorization of biorefinery residues for sustainable fertilizer production: A comprehensive review. Biomass Convers Biorefin 13: 14359-14388. DOI: 10.1007/s13399-023-04639-2.
Chorolque A, Pellejero G, Sosa MC, Palacios J, Aschkar G, García-Delgado C, Jiménez-Ballesta R. 2022. Biological control of soil-borne phytopathogenic fungi through onion waste composting: Implications for circular economy perspective. Intl J Environ Sci Technol 19: 6411-6420. DOI: 10.1007/s13762-021-03561-2.
Chuang WY, Hsieh YC, Lee TT. 2020. The effects of fungal feed additives in animals: A review. Animals (Basel) 10 (5): 805. DOI: 10.3390/ani10050805.
Dewi MAK, Aurina DM, Faturrahman AD, Fatikha LA, Rachmalia F, Ainaya FA, Kinanthi A, Rohman CM, Fadzilah FPA, Pramudita DA, Ramadhan MF, Mahajoeno E, Nugroho GD, Sujarta P, Dadiono MS, Yap CK, Rahim KABA, Setyawan AD. 2023. Ecological index and economic potential of mollusks (Gastropods and Bivalves) in Ayah Mangrove Forest, Kebumen District, Indonesia. Biodiversitas 24 (2): 1231-1241. DOI: 10.13057/biodiv/d240265.
Dini IR, Afriani E. 2022. The effect of lignocellulolytic bacteria consortium on composting empty oil palm fruit bunches. Intl J Sci Res Arch 7 (1): 220-228. DOI: 10.30574/ijsra.2022.7.1.0130.
Dong W, Zhou R, Li X, Yan H, Zheng J, Peng N, Zhao S. 2024. Effect of simplified inoculum agent on performance and microbiome during cow manure-composting at industrial-scale. Bioresour Technol 393: 130097. DOI: 10.1016/j.biortech.2023.130097.
Duan Y, Pandey A, Zhang Z, Awasthi MK, Bhatia SK, Taherzadeh MJ. 2020. Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Ind Crops Prod 153: 112568. DOI: 10.1016/j.indcrop.2020.112568.
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. 2024. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 10: e28615. DOI: 10.1016/j.heliyon.2024.e28615.
Heryadi E, Hermanto, Susanty A. 2021. Biogas and bioenergy potential from solid wastes (empty fruit bunch, mesocarp fiber, and decanter cake) of palm oil industries in East Kalimantan. Jurnal Riset Teknologi Industri 15 (2): 487-497. [Indonesian]
Kanong P, Sakulrat J. 2022. Starting temperature controlled reactor to accelerate composting of household organic waste. J Eng Sci Technol 17 (2): 1487-1507.
Kracmarova-Farren M, Papik J, Uhlik O, Freeman J, Foster A, Leewis MC, Creamer C. 2023. Compost, plants and endophytes versus metal contamination: Choice of a restoration strategy steers the microbiome in polymetallic mine waste. Environ Microbiome 18 (1): 74. DOI: 10.1186/s40793-023-00528-3.
Lazcano C, Zhu-Barker X, Decock C. 2021. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms 9 (5): 983. DOI: 10.3390/microorganisms9050983.
Lu X, Yang Y, Hong C, Zhu W, Yao Y, Zhu F, Hong L, Wang W. 2022. Optimization of vegetable waste composting and the exploration of microbial mechanisms related to fungal communities during composting. J Environ Manage 319: 115694. DOI: 10.1016/j.jenvman.2022.115694.
Mili C, Tayung K. 2024. Application of compatible lignocellulolytic fungal consortia for quality composting of leaf litter and assessment of the end products. Bioresour Technol Rep 25: 101800. DOI: 10.1016/j.biteb.2024.101800.
Mulya H, Santosa Y, Hilwan I. 2021. Comparison of four species diversity indices in mangrove community. Biodiversitas 22 (9): 3648-3655. DOI: 10.13057/biodiv/d220906.
Nurcahyanti SD, Masnilah R, Budiman SA, Tanzil AI, Nurdika AAH. 2024. Microbial consortium formulation in liquid organic fertilizer for managing bacterial leaf blight (Xanthomonas oryzae pv. oryzae), rice blast (Pyricularia oryzae), and enhancing rice productivity. Biodiversitas 25: 2209-2220. DOI: 10.13057/biodiv/d250539.
Prasedya ES, Kurniawan NS, Kirana IA, Ardiana N, Abidin AS, Ilhami BT, Jupri A, Widyastuti S, Sunarpi H, Nikmatullah A. 2022. Seaweed fertilizer prepared by EM-fermentation increases abundance of beneficial soil microbiome in paddy (Oryza sativa L.) during vegetative stage. Fermentation 8: 46. DOI: 10.3390/fermentation8020046.
Pratiknyo H, Setyowati EA. 2020. Short Communication: The diversity of termites along the altitudinal gradient in a Karst Area of Southern Gombong, Central Java, Indonesia. Biodiversitas 21 (4): 1730-1734. DOI: 10.13057/biodiv/d210456.
Qiao C, Penton CR, Liu C, Tao C, Deng X, Ou Y, Liu H, Li R. 2021. Patterns of fungal community succession triggered by C/N ratios during composting. J Hazard Mater 401: 123344. DOI: 10.1016/j.jhazmat.2020.123344.
Rathour RK, Devi M, Dahiya P, Sharma N, Kaushik N, Kumari D, Kumar P, Baadhe RR, Walia A, Bhatt AK, Bhatia RK. 2023. Recent trends, opportunities and challenges in sustainable management of rice straw waste biomass for green biorefinery. Energies 16 (3): 1429. DOI: 10.3390/en16031429.
Robledo-Mahón, Gómez-Silván C, Andersen GL, Calvo C, Aranda E. 2020. Assessment of bacterial and fungal communities in a full-scale thermophilic sewage sludge composting pile under a semipermeable cover. Bioresour Technol 298: 122550. DOI: 10.1016/j.biortech.2019.122550.
Rocha TM, Marcelino PR, Da Costa RA, Rubio-Ribeaux D, Barbosa FG, da Silva SS. 2024. Agricultural bioinputs obtained by solid-state fermentation: From production in biorefineries to sustainable agriculture. Sustainability 16 (3): 1076. DOI: 10.3390/su16031076.
Rodionova MV, Bozieva AM, Zharmukhamedov SK, Leong YK, Lan JC, Veziroglu A, Veziroglu TN, Tomo T, Chang JS, Allakhverdiev SI. 2022. A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Intl J Hydrogen Energy 47 (3): 1481-1498. DOI: 10.1016/J.IJHYDENE.2021.10.122.
Samson RA. 1984. Introduction to Food-Borne Fungi, Second edition. Centraalbureau voor Schimmelcultures, Netherlands.
Sembiring M, Lubis AR, Armaniar. 2021. Effective combination of palm oil plant waste and animal waste with bio-activator EM4 produces organic fertilizer. Commun Math Biol Neurosci 20: 1-17. DOI: 10.28919/cmbn/5434.
Sharma S, Nair A, Sarma SJ. 2021. Biorefinery concept of simultaneous saccharification and co-fermentation: Chem Eng Process: Process Intensif 169: 108634. DOI: 10.1016/J.CEP.2021.108634.
Shi YC, Zheng YJ, Lin YC, Huang CH, Shen TL, Hsu YC, Lee BH. 2024. Investigation of the microbial diversity in the Oryza sativa cultivation environment and artificial transplantation of microorganisms to improve sustainable mycobiota. J Fungi (Basel) 10 (6): 412. DOI: 10.3390/jof10060412.
Wang X, Kong Z, Wang Y, Wang M, Liu D, Shen Q. 2020. Insights into the functionality of fungal community during the large scale aerobic co-composting process of swine manure and rice straw. J Environ Manage 270: 110958. DOI: 10.1016/j.jenvman.2020.110958.
Wardhana HD, Muttaqin T, Aryanti NA, Kurniawan I. 2022. Potential feeding plants of Javan Langur (Trachypithecus auratus) in the eastern slope of Biru Mountain, Batu City, East Java, Indonesia. Biodiversitas 23 (8): 4216-4222. DOI: 10.13057/biodiv/d230845.
Wu H, Zhang S, Zhou J, Cong H, Feng S, Sun F. 2024. Relative contribution of fungal communities to carbon loss and humification process in algal sludge aerobic composting. Water 16 (8): 1084. DOI: 10.3390/w16081084.
Wu X, Ren L, Luo L, Zhang J, Zhang L, Huang H. 2020. Bacterial and fungal community dynamics and shaping factors during agricultural waste composting with zeolite and biochar addition. Sustainability 12 (17): 7082. DOI: 10.3390/su12177082.
Xiao M, Chen C, Yao R, Wang X, Liu G. 2024. Response of soil fungal community in coastal saline soil to short-term water management combined with bio-organic fertilizer. Agronomy 14 (7): 1441. DOI: 10.3390/agronomy14071441.
Zhang J, Shen C, Shang TH, Liu JL. 2022. Difference responses of soil fungal communities to cattle and chicken manure composting application. J Appl Microbiol 133: 323-339. DOI: 10.1111/jam.15549.
Zhang Z, Gu Y, Wang S, Zhen Y, Chen Y, Wang Y, Mao Y, Meng J, Duan Z, Xu J, Wang M. 2024. Effective microorganism combinations improve the quality of compost-bedded pack products in heifer barns: Exploring pack bacteria-fungi interaction mechanisms. BMC Microbiol 24 (1): 302. DOI: 10.1186/s12866-024-03447-6.
Zhao C, Wu B, Hao W, Li G, Yan P, Yang X, Mao S, Wei S. 2024. Dynamic changes in physicochemical properties and microbial community in three types of recycled manure solids for dairy heifers. Agronomy 14 (6): 1132. DOI: 10.3390/agronomy14061132.
Zhao Y, Cai J, Zhang P, Qin W, Lou Y, Liu Z, Hu B. 2022. Core fungal species strengthen microbial cooperation in a food-waste composting process. Environ Sci Ecotechnol 12: 100190. DOI: 10.1016/j.ese.2022.100190.

Most read articles by the same author(s)