Investigation of streptococcosis (Streptococcus iniae) as a cause of popeye and hemorrhagic disease in tilapia (Oreochromis niloticus) in the Mekong Delta, Vietnam

##plugins.themes.bootstrap3.article.main##

NGUYEN BAO TRUNG
TU THANH DUNG
QUACH VAN CAO THI

Abstract

Abstract. Trung NB, Dung TT, Thi QVC. 2024. Investigation of streptococcosis (Streptococcus iniae) as a cause of popeye and hemorrhagic disease in tilapia (Oreochromis niloticus) in the Mekong Delta, Vietnam. Biodiversitas 25: 3032-3040. Streptococcus iniae, is a dangerous pathogen that causes serious harm to several aquatic animals around the world. The current study aimed to isolate, characterize, and assess the pathogenicity of the Streptococcus iniae that causes popeye and hemorrhagic diseased nile tilapia (Oreochromis niloticus Linnaeus, 1758) in the Mekong Delta, Vietnam. Infected tilapia showed disorienting or lethargic swimming, exophthalmia (unilateral or bilateral), corneal opacity, and hemorrhages on the body, the operculum, and the abdomen of the fish. Upon internal examination, the diseased fish were found to have a pale liver, swollen kidney, and white or yellow fluid accumulation in the abdominal cavity. With the use of the API 20Strep Kit, conventional techniques, and 16S rRNA gene sequencing, a total of 16 isolates were determined to be S. iniae. They are Gram-positive bacteria, cocci or streptococci, with ?-hemolysis and small, white, opalescent colonies on BHIA medium after 24-36 hours of incubation at 28ºC. The obtained challenge tests showed that both isolates of RPBT02 and RPHG36 were highly virulent to fish, with LD50 values determined to be 2.34×104 and 1.81×104 CFU/mL, respectively. Interestingly, the two isolates of RPHG36 and RPBT02 in this study contained the virulence gene phosphoglucomutase (pgm), one of the factors that make S. iniae enhance antibiotic resistance and phagocytosis of the immune system by the host. These results of the study are important information for finding effective ways to control this bacterium in tilapia in the future.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. 2020. The nature and consequences of co-infections in tilapia: A review. J Fish Dis 43 (6): 651-664. DOI: 10.1111/jfd.13164.
Aboyadak IM, Ali NG, Abdel-Aziz MM, Gado MS, El-Shazly KA. 2016. Role of some antibacterial drugs in control Streptococcus iniae infection in Oreochromis niloticus. J Pharmacol Clin Res 1 (5): 555-73. DOI: 10.19080/JPCR.2016.01.555573.
Acosta-Pérez VJ, Ángeles-Hernández JC, Vega-Sánchez V, Zepeda-Velázquez AP, Añorve-Morga J, Ponce-Noguez JB, Reyes-Rodríguez NE, De-La-Rosa-Arana JL, RamírezParedes JG, Gómez-De-Anda FR. 2022. Prevalence of parasitic infections with zoonotic potential in tilapia: A systematic review and meta-analysis. Animals 12 (20): 2800. DOI: 10.3390/ani12202800.
Admasu F, Wakjira M. 2021. Non-Infectious diseases and biosecurity management practices of fishes health in aquaculture. J fisheriessci.com 15 (6): 10182.
Anshary H, Kurniawan RA, Sriwulan S, Ramli R, Baxa DV. 2014. Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia. Springerplus 24 (3): 627. DOI: 10.1186/2193-1801-3-627.
Arguedas D, Ortega C, Martínez S, Astroza A. 2017. Parasites of Nile Tilapia larvae Oreochromis niloticus (Pisces: Cichlidae) in concrete ponds in Guanacaste, Northern Costa Rica. UNED Res J 9 (2): 313-319. DOI: 10.22458/urj.v9i2.1904.
Assefa A, Abunna F. 2018. Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Intl 2018: 5432497. DOI: 10.1155/2018/5432497.
Barría A, Trinh TQ, Mahmuddin M, Peñaloza C, Papadopoulou A, Gervais O, Chadag VM, Benzie JAH, Houston RD. 2021. A major quantitative trait locus afecting resistance to Tilapia lake virus in farmed nile tilapia (Oreochromis niloticus). Heredity 127 (3): 334-343. DOI: 10.1038/s41437-021-00447-4.
Buchanan JT, Stannard JA, Lauth X, Ostl VE, Powell HC, Westerman ME, Nizet V. 2005. Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infect Immunol 73 (10): 6935-6944. DOI: 10.1128/IAI.73.10.6935-6944.2005.
Buller BN. 2014. Bacteria from Fish and Other Aquatic Animals-A Practical Identification Manual. CABI Publishing, Oxfordshire. DOI: 10.1079/9781845938055.0000.
Bwalya P, Simukoko C, Hang’ombe BM, Støre SC, Støre P, Gamil AAA, Evensen Ø, Mutoloki S. 2020. Characterization of streptococcus-like bacteria from diseased Oreochromis niloticus farmed on Lake Kariba in Zambia. Aquaculture 523: 735185. DOI: 10.1016/j.aquaculture.2020.735185.
Cai XH, Peng YH, Wang ZC, Huang T, Xiong XY, Huang YC, Wang B, Xu LW, Wu ZH. 2016. Characterization and identification of streptococci from golden pompano in China. Dis Aquat Organ 119 (3): 207-217. DOI: 10.3354/dao02998.
Colussi S, Pastorino P, Mugetti D, Antuofermo E, Sciuto S, Esposito G, Polinas M, Tomasoni M, Burrai GP, Fernández-Garayzábal JF, Acutis PL, Pedron C, Prearo M. 2022. Isolation and genetic characterization of Streptococcus iniae virulence factors in Adriatic sturgeon (Acipenser naccarii). Microorganisms 10 (5): 883. DOI: 10.3390/microorganisms10050883.
Debnath SC, McMurtrie J, Temperton B, Delamare-Deboutteville J, Mohan CV, Tyler CR. 2023. Tilapia aquaculture, emerging diseases, and the roles of the skin microbiomes in health and disease. Aquac Intl 31 (5): 2945-2976. DOI: 10.1007/s10499-023-01117-4.
Deng ML, Yu ZH, Geng Y, Wang KY, Chen DF, Huang XL, Ou Y, Chen Z, Zhong Z, Lai W. 2017. Outbreaks of streptococcosis associated with Streptococcus iniae in Siberian sturgeon (Acipenser baerii) in China. Aquac Res 48: 909-919. DOI: 10.1111/are.12934.
Dung TT, Huynh TNT, Nguyen KD. 2013. Streptococcus iniae, the causative agent of “dark body” disease in climbing perch (Anabas testudineus) in the Mekong Delta. CTU J Sci 26: 96-103.
Dung TT, Thi QVC, Trung NB. 2024. Streptococcus agalactiae Associated with "Dark Body" disease on snakeskin gourami farmed in the Mekong Delta, Vietnam. HAYATI J Biosci 31 (3): 486-497. DOI: 10.4308/hjb.31.3.486-497.
El-Tawab AAA, El-Hofy FI, Saad WH, El-Mougy E, Mohammed AA, Ali NG. 2022. Virulence-associated genes profiling of Streptococcus iniae isolated from diseased nile tilapia (Oreochromis niloticus). Benha Vet Med J 42: 186-190. DOI: 10.21608/bvmj.2022.132871.1514.
Fajer-Ávila EJ, Medina-Guerrero RM, Morales-Serna FN. 2017. Strategies for prevention and control of parasite diseases in cultured tilapia. Acta Agrícola Pecu 3: 25-31. DOI: 10.3390/ani12202800.
Fouad MR, El-Aswad AF, Aly MI. 2022. Acute toxicity, biochemical and histological of fenitrothion and thiobencarb on fish Nile tilapia (Oreochromis niloticus). Nusantara Biosci 14: 217-226. DOI: 10.13057/nusbiosci/n140213.
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Wang Y. 2024. Bacterial capsules: Occurrence, mechanism, and function. npj Biofilms Microbiomes 10 (1): 21. DOI: 10.1038/s41522-024-00497-6.
Guijarro JA, Cascales D, García-Torrico AI, García-Domínguez M, Méndez J. 2015. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol 6: 700. DOI: 10.3389/fmicb.2015.00700.
Haenen OLM, Dong HT, Hoai TD. 2023. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Rev Aquac 15 (Suppl.1): 154?185. DOI: 10.1111/raq.12743.
Hoa TT, Phuoc NN, Oanh DTH. 2018. Characteristics of Streptococcus iniae infected in barramundi (Lates calcarifer). CTU J Sci 54 (3B): 156-163. DOI: 10.22144/ctu.jvn.2018.052.
Jeong YU, Subramanian D, Yeoung-Hwan J, Kim DH, Park SH, Park KI, Lee YD, Heo MS. 2016. Protective efficiency of an inactivated vaccine against Streptococcus iniae in olive flounder, Paralichthys olivaceus. Arch Pol Fish 24: 23-32. DOI: 10.1515/aopf-2016-0003.
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. 2024. Streptococcus iniae in aquaculture: A review of pathogenesis, virulence, and antibiotic resistance. Intl J Vet Sci Med 12 (1): 25-38. DOI: 10.1080/23144599.2024.2348408.
Kannika K, Pisuttharachai D, Srisapoome P, Wongtavatchai J, Kondo H, Hirono I, Areechon N, 2017. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR. J Appl Microbiol 122 (6): 1497-1507. DOI: 10.1111/jam.13447.
Khanzadeh M, Beikzadeh B, Hoseinifar SH. 2023. The Effects of Laurencia capsica algae extract on hemato-immunological parameters, antioxidant defense, and resistance against Streptococcus agalactiae in nile tilapia (Oreochromis niloticus). Aquac Nutr 2023: 8882736. DOI: 10.1155/2023/8882736.
Khanzadeh M, Hoseinifar SH, Beikzadeh B. 2024. Investigating the effect of hydroalcoholic extract of red algae (Laurencia caspica) on growth performance, mucosal immunity, digestive enzyme activity and resistance to Streptococcus iniae and Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Aquac Rep 35: 101984. DOI: 10.1016/j.aqrep.2024.101984.
Legario FS, Choresca CH, Turnbull JF, Crumlish M. 2020. Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. J Fish Dis 43: 1431-1442. DOI: 10.1111/jfd.13247.
Mahboub HH. 2021. Mycological and histopathological identification of potential fish pathogens in nile tilapia. Aquac 530: 735849. DOI: 10.1016/j.aquaculture.2020.735849.
Maulu S, Hasimuna OJ, Mphande J, Munang'andu HM. 2021. Prevention and control of streptococcosis in tilapia culture: A systematic review. J Aquat Anim Health 33 (3): 162-177. DOI: 10.1002/aah.10132.
Mmanda FP, Zhou S, Zhang J, Zheng X, An S, Wang G. 2014. Massive mortality associated with Streptococcus iniae infection in cage-cultured red drum (Sciaenops ocellatus) in Eastern China. Afr J Microbiol Res 8 (16): 1722-1729. DOI: 10.5897/AJMR2014.6659.
Moore E, Arnscheidt A, Kruger A, Strompl C, Mau M. 2004. Simplified protocols for preparation of genomic DNA from bacterial cultures. Mol Microbial Manual 101: 3-18.
Ndashe K, Hang’ombe BM, Changula K, Yabe J, Samutela MT, Songe MM, Kefi AS, Njobvu Chilufya L, Sukkel M. 2023. An assessment of the risk factors associated with disease outbreaks across tilapia farms in central and southern Zambia. Fishes 8: 49. DOI: 10.3390/fishes8010049.
Ortega CESAR, García I, Irgang R, Fajardo R, Tapia?Cammas D, Acosta J, Avendaño?Herrera R. 2018. First identification and characterization of Streptococcus iniae obtained from tilapia (Oreochromis aureus) farmed in Mexico. J Fish Dis 41: 773-782. DOI: 10.1111/jfd.12775.
Phuoc NN, Hanh LTN, Sao NT, Anh NDQ, Hoa TT, Duy LVB. 2015. The research on biochemical characteristics of Streptococcus sp. causing disease on tilapia at the Mekong Delta, Vietnam. Hue Univ J Sci 104 (05): 221-233. DOI: 10.26459/jard.v104i5.2963.
Pirollo T, Perolo A, Mantegari S, Barbieri I, Scali F, Alborali GL, Salogni C. 2023. Mortality in farmed European eel (Anguilla anguilla) in Italy due to Streptococcus iniae. Acta Vet Scand 65 (1): 5. DOI: 10.1186/s13028-023-00669-y.
Rahmatullah M, Ariff M, Kahieshesfandiari M, Daud HM, Zamri-Saad M, Sabri MY, Ina-Salwany MY. 2017. Isolation and pathogenicity of Streptococcus iniae in cultured red hybrid tilapia in Malaysia. J Aquat Anim Health 29: 208-213. DOI: 10.1080/08997659.2017.1360411.
Ramos-Espinoza FC, Cueva-Quiroz VA, Yunis-Aguinaga J, de Moraes JRE. 2020. A comparison of novel inactivation methods for production of a vaccine against Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. Aquaculture 528: 735484. DOI: 10.1016/j.aquaculture.2020.735484.
Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27 (3): 493-497. DOI: 10.1093/oxfordjournals.aje.a118408.
Saleh HA, Sabry NM, Abd Al-Razik M, Mohamed FA, Ibrahim MS. 2017. Pathogenicity and characterization of Streptococcosis in Egyptian Nile Tilapia (Oreochromis niloticus) in Kafr Elshikh Governorate. Alex J Vet Sci 52: 173-179. DOI: 10.5455/ajvs.243929.
Sharma AK, Dhasmana N, Dubey N, Kumar N, Gangwal A, Gupta M, Singh Y. 2017. Bacterial virulence factors: Secreted for survival. Indian J Microbiol 57 (1): 1-10. DOI: 10.1007/s12088-016-0625-1.
Shoemaker CA, Lozano CA, LaFrentz BR, Garcia JC, Soto E, Xu DH, Beck BH, Rye M. 2017. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S-agalactiae capsular type Ib: Is genetic resistance correlated?. Aquaculture 468: 193-198. DOI: 10.1016/j.aquaculture.2016.10.022.
Song Z, Yue R, Sun Y, Liu C, Khan SH, Li C, Zhao Y, Zhou X, Yang L, Zhao D. 2017. Fatal bacterial septicemia in a bottlenose dolphin Tursiops truncatus caused by Streptococcus iniae. Dis Aquat Org 122 (3): 195-203. DOI: 10.3354/dao03069.
Surachetpong W, Janetanakit T, Nonthabenjawan N, Tattiyapong P, Sirikanchana K, Amonsin A. 2017. Outbreaks of tilapia lake virus infection, Thailand, 2015-2016. Emerg Infect Dis 23 (6): 1031. DOI: 10.3201/eid2306.161278.
Tafi AA, Meshkini S, Tukmechi A, Alishahi M, Noori F. 2020. Therapeutic and histopathological effect of Aloe vera and Salvia officinalis hydroethanolic extracts against Streptococcus iniae in rainbow trout. Arch Razi Inst 75 (2): 275. DOI: 10.22092/ari.2019.122855.1232.
Tavares GC, de Queiroz GA, Assis GBN, Leibowitz MP, Teixeira JP, Figueiredo HCP, Leal CAG. 2018. Disease outbreaks in farmed Amazon catfish (Leiarius marmoratus x Pseudoplatystoma corruscans) caused by Streptococcus agalactiae, S. iniae, and S. dysgalactiae. Aquaculture 495: 384-392. DOI: 10.1016/j.aquaculture.2018.06.027.
Van Doan H, Soltani M, Leitão A, Shafiei S, Asadi S, Lymbery AJ, Ringø E. 2022. Streptococcosis a re-emerging disease in aquaculture: Significance and phytotherapy. Animals (Basel) 12 (18): 2443. DOI: 10.3390/ani12182443.
Wang X. 2020. Characterization of Streptococcus iniae ghost vaccine and its immunization in Nile tilapia (Oreochromis niloticus). Aquac Res 00: 1-10. DOI: 10.1111/are.14990.
Woo SH, Park SI. 2014. Effects of phosphoglucomutase gene (PGM) in Streptococcus parauberis on innate immune response and pathogenicity of olive ?ounder (Paralichthys olivaceus). Fish Shellfish Immunol 41 (2): 317-325. DOI: 10.1016/j.fsi.2014.09.012.
Xu H, Zhu N, Chen Y, Yue H, Zhuo M, Wangkahart E, Liang Q and Wang R. 2024. Pathogenicity of Streptococcus iniae causing mass mortalities of yellow catfish (Tachysurus fulvidraco) and its induced host immune response. Front Microbiol 15: 1374688. DOI: 10.3389/fmicb.2024.1374688.
Zhang Z. 2021. Research advances on tilapia streptococcosis. Pathogens 10: 558. DOI: 10.3390/pathogens10050558.
Zhang W, Chen K, Zhang L, Zhang X, Zhu B, Lv N, Mi K. 2023. The impact of global warming on the signature virulence gene, thermolabile hemolysin, of Vibrio parahaemolyticus. Microbiol Spectr 11: e01502-23. DOI: 10.1128/spectrum.01502-23.
Zheng Y, Wu W, Hu G, Qiu L, Meng S, Song C, Fan L, Zhao Z, Bing X, Chen J. 2018. Gut microbiota analysis of juvenile genetically improved farmed tilapia (Oreochromis niloticus) by dietary supplementation of different resveratrol concentrations. Fish Shellfish Immunol 77: 200-207. DOI: 10.1016/j.fsi.2018.03.040.