Characterization and identification of potential cellulolytic bacteria for bio-degradation of durian shell waste in Mekong Delta, Vietnam

##plugins.themes.bootstrap3.article.main##

TRUONG QUOC TAT
NGUYEN DUY KHANH
QUACH VAN CAO THI

Abstract

Abstract. Tat TQ, Khanh ND, Thi QVC. 2024. Characterization and identification of potential cellulolytic bacteria for bio-degradation of durian shell waste in Mekong Delta, Vietnam. Biodiversitas 25: 4284-4291. Microorganisms play crucial roles in the decomposition of plant biomass. This study aimed to isolate, screen, and identify potential mesophilic cellulose-degrading bacterial (CDB) strains from natural compost from durian shells (DS). Results revealed that a total of fifteen aerobic strains were isolated at 37°C, thirteen of which exhibited enzymatic degradation of cellulose, with cellulolytic index (CI) values ranging from 0.34 to 3.22. Five strains with CI values greater than 2.0 presented potential extracellular cellulase enzyme activity, with carboxymethyl cellulase (CMCase) at 0.18-0.31 U/mL and filter paper cellulase (FPase) at 0.03-0.19 U/mL. The DSC.03 and DSC.04 strains showed the highest CMCase and FPase activities, respectively. Subsequently, molecular identification and phylogenetic analysis confirmed DSC.03 (PP851408.1) and DSC.04 (PP851410.1) isolates as Bacillus subtilis and Bacillus velezensis, respectively. The maximum bio-degradation percentages were 86.85% for filter paper and 48.72% for dry DS powder, which occurred in the mixed-culture treatment of the two selected strains after 15 days of incubation under shaking conditions at 150 rpm and 37°C. These findings indicate for the first time that natural durian shell compost contains potential cellulose-degrading bacterial communities with high extracellular enzyme-producing ability and active interactions with each other, which can be beneficial for the fermentation or composting of DS waste.

##plugins.themes.bootstrap3.article.details##

References
Adebami GE, Adebayo-Tayo BC. 2020. Development of cellulolytic strain by genetic engineering approach for enhanced cellulase production. In: Kuila A, Sharma V (eds). Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass. Elsevier, Amsterdam. DOI: 10.1016/B978-0-12-817953-6.00008-7.
Barzkar N, Sohail M. 2020. An overview on marine cellulolytic enzymes and their potential applications. Appl Microbiol Biotechnol 104 (16): 6873-6892. DOI: 10.1007/s00253-020-10692-y.
Bergey DH. 1994. Bergey's Manual of Determinative Bacteriology. Lippincott Williams and Wilkins, Philadelphia.
Bui HB. 2014. Isolation of cellulolytic bacteria, including actinomycetes, from coffee exocarps in coffee-producing areas in Vietnam. Intl J Recycl Org Waste Agricult 3: 1-8. DOI:10.1007/s40093-014-0048-0.
Chen CC, Dai L, Ma L, Guo RT. 2020. Enzymatic degradation of plant biomass and synthetic polymers. Nat Rev Chem 4 (3): 114-126. DOI: 10.1038/s41570-020-0163-6.
Chu-Ky S, Vu NT, Phi QT, Anh TP, To KA, Quan LH, Nguyen TT, Luong HN, Vu TT, Nguyen TC, Pham TA. 2022. Adding values to agro-industrial byproducts for the bioeconomy in Vietnam. In: Anal AK, Panesar PS (eds). Valorization of Agro-Industrial Byproducts. CRC Press, Florida. DOI: 10.1201/9781003125679.
Cortes-Tolalpa L, Salles JF, van Elsas JD. 2017. Bacterial synergism in lignocellulose biomass degradation-complementary roles of degraders as influenced by complexity of the carbon source. Front Microbiol 8: 1628. DOI: 10.3389/fmicb.2017.01628.
Dewiyanti I, Darmawi D, Muchlisin ZA, Helmi TZ, Arisa II, Rahmiati R, Destri E. 2022. Cellulase enzyme activity of the bacteria isolated from mangrove ecosystem in Aceh Besar and Banda Aceh. IOP Conf Ser: Earth Environ Sci 951: 012113. DOI: 10.1088/1755-1315/951/1/012113.
Egwuatu TF, Appeh OG. 2018. Isolation and characterization of filter paper degrading bacteria from the guts of Coptotermes formosanus. Suan Sunandha Sci Tech J 5 (2): 20-26. DOI: 10.14456/ssstj.2018.9.
Ferbiyanto A, Rusmana I, Raffiudin R. 2015. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. Hayati J Biosci 22: 197-200. DOI: 10.1016/j.hjb.2015.07.001.
Gupta P, Samant K, Sahu A. 2012. Isolation of cellulose?degrading bacteria and determination of their cellulolytic potential. Intl J Microbiol (1): 578925. DOI: 10.1155/2012/578925.
Helal DS, El-Khawas H, Elsayed TR. 2022. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 20 (1): 79. DOI: 10.1186/s43141-022-00361-0.
Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD. 2012. New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82 (3): 666-677. DOI:10.1111/j.1574-6941.2012.01437.x.
Juturu V, Wu JC. 2014. Microbial cellulases: Engineering, production and applications. Renew Sustain Energy Rev 33: 188-203. DOI: 10.1016/j.rser.2014.01.077.
Kadhum HA, Hasan TH. 2019. The study of Bacillus subtils antimicrobial activity on some of the pathological isolates. Intl J Drug Deliv Technol 9 (2): 193-196. DOI: 10.25258/ijddt.9.2.12.
Karthika A, Seenivasagan R, Kasimani R, Babalola OO, Vasanthy M. 2020. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Waste Manag 116: 58-65. DOI: 10.1016/j.wasman.2020.06.036.
Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. 2004. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51 (1): 133-142. DOI: 10.1016/j.femsec.2004.07.015.
Khotimah S, Suharjono S, Ardyati T, Nuraini Y. 2020. Isolation and identification of cellulolytic bacteria at fibric, hemic and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia. Biodiversitas 21 (5): 2103-2112. DOI: 10.13057/biodiv/d210538.
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. 2023. Microbial cellulase production and its potential application for textile industries. Ann Microbiol 73 (1): 13. DOI: 10.1186/s13213-023-01715-w.
Li F, Xie Y, Gao X, Shan M, Sun C, Niu YD, Shan A. 2020. Screening of cellulose degradation bacteria from min pigs and optimization of its cellulase production. Electron J Biotechnol 48: 29-35. DOI: 10.1016/j.ejbt.2020.09.001.
Liu L, Huang WC, Liu Y, Li M. 2021. Diversity of cellulolytic microorganisms and microbial cellulases. Intl Biodeterior Biodegradation 163: 105277. DOI: 10.1016/j.ibiod.2021.105277.
Lokapirnasari WP, Nazar DS, Nurhajati T, Supranianondo K, Yulianto AB. 2015. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir. Indonesian Vet World 8 (3): 367-371. DOI: 10.14202%2Fvetworld.2015.367-371.
Ly TB, Trinh AM, Tran HP, Dang KN, Nguyen TD, Tran VT, Le PK. 2024. Evaluation of an operating durian shell charcoal briquette manufacturing line and development of a biorefinery process for higher value products. Energy 307: 132727. DOI: 10.1016/j.energy.2024.132727.
Ma L, Lu Y, Yan H, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. 2020. Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnol 20: 2. DOI: 10.1186/s12896-019-0593-8.
Mandic-Mulec I, Stefanic P, van Elsas JD. 2016. Ecology of bacillaceae. The bacterial spore: From molecules to systems. Am Soc Microbiol 59-85.
Nguyen NTH, Nguyen TTT, Nguyen DTC, Van Tran T. 2024. A comprehensive review on the production of durian fruit waste-derived bioadsorbents for water treatment. Chemosphere 363: 142801. DOI: 10.1016/j.chemosphere.2024.142801.
Ojumu TV, Solomon BO, Betiku E, Layokun SK, Amigun B. 2003. Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr J Biotechnol 2 (6): 150-152. DOI: 10.5897/AJB2003.000-1030.
Putri ANI, Herdiwijaya D, Hidayat T. 2024. Correlation cosmic ray intensity based on variation in solar activity and interplanetary plasma parameters using principal component analysis (PCA). J Phys Conf 2773: 012012. DOI: 10.1088/1742-6596/2773/1/012012.
Rastogi G, Muppidi GL, Gurram RN, Adhikari A, Bischoff KM, Hughes SR, Apel WA, Bang SS, Dixon DJ, Sani RK. 2009. Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Indus Microbiol Biotechnol 36 (4): 585. DOI: 10.1007/s10295-009-0528-9.
Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Intl J Syst Evol Microbiol 55 (1): 191-195. DOI: 10.1099/ijs.0.63310-0.
Sarsan S, Pandiyan A, Rodhe AV, Jagavati S. 2021. Synergistic interactions among microbial communities. In: Singh RP, Manchanda G, Bhattacharjee K, Panosyan H (eds). Microbes in Microbial Communities. Springer, Singapore. DOI: 10.1007/978-981-16-5617-0_1.
Siu-Rodas Y, de los Angeles Calixto-Romo M, Guillén-Navarro K, Sánchez JE, Zamora-Briseno JA, Amaya-Delgado L. 2018. Bacillus subtilis with endocellulase and exocellulase activities isolated in the thermophilic phase from composting with coffee residues. Rev Argent Microbiol 50 (3): 234-243. DOI: 10.1016/j.ram.2017.08.005.
Soliman SA, Khaleil MM, Metwally RA. 2022. Evaluation of the antifungal activity of Bacillus amyloliquefaciens and B. velezensis and characterization of the bioactive secondary metabolites produced against plant pathogenic fungi. Biology 11 (10): 1390. DOI: 10.3390/biology11101390.
Tasaki S, Nakayama M, Shoji W. 2017. Morphologies of Bacillus subtilis communities responding to environmental variation. Dev Growth Differ 59 (5): 369-378. DOI: 10.1111/dgd.12383.
Thapa S, Mishra J, Arora N, Mishra P, Li H, Hair J, Bhatti S, Zhou S. 2020. Microbial cellulolytic enzymes: Diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev Environ Sci Biotechnol 19: 621-648 DOI: 10.1007/s11157-020-09536-y.
Tran QT, ?o TH, Ha XL, Duong TT, Chu MN, Vu VN, Chau HD, Tran TK, Song P. 2022. Experimental design, equilibrium modeling and kinetic studies on the adsorption of methylene blue by adsorbent: Activated carbon from durian shell waste. Materials 15 (23): 8566. DOI: 10.3390/ma15238566.
Tu Nguyen M, Binh Nguyen T, Khoi Dang K, Luu T, Hung Thach P, Lan Phuong Nguyen K, Quan Nguyen H. 2022. Current and potential uses of agricultural by-products and waste in main food sectors in Vietnam-A circular economy perspective. In: Ren J, Zhang L (eds). Circular Economy and Waste Valorisation. Industrial Ecology and Environmental Management. Springer, Cham. DOI: 10.1007/978-3-031-04725-1_6.
Xie J, Yap G, Simpson D, Gänzle M. 2024. The effect of seed germination and Bacillus spp. on the ripening of plant cheese analogs. Appl Environ Microbiol 90 (3): e02276-23. DOI: 10.1128/aem.02276-23.
Yadav LS, Bagool RG. 2015. Isolation and screening of cellulolytic Chaetomium sp. from deteriorated paper samples. Intl J Curr Microbiol App Sci 4 (8): 629-635.
Zhou J, Xie Y, Liao Y, Li X, Li Y, Li S, Ma X, Lei S, Lin F, Jiang W, He YQ. 2022. Characterization of a Bacillus velezensis strain isolated from Bolbostemmatis rhizoma displaying strong antagonistic activities against a variety of rice pathogens. Front Microbiol 13: 983781. DOI: 10.3389/fmicb.2022.983781.

Most read articles by the same author(s)