Isolation and identification of salt-tolerant, phosphorus-solubilizing bacterial strains from rice soil in rice-shrimp farming systems in Tien Giang Province, Vietnam

##plugins.themes.bootstrap3.article.main##

TRUONG QUOC TAT

Abstract

Abstract. Tat TQ. 2024. Isolation and identification of salt-tolerant, phosphorus-solubilizing bacterial strains from rice soil in rice-shrimp farming systems in Tien Giang Province, Vietnam. Biodiversitas 25: 3868-3875. This study aimed to isolate, select, and identify the phosphate-soluble bacterial (PSB) pathogens from eight salt-affected soil samples collected from paddy rice fields in the Go Cong Dong and Tan Phu Dong districts of Tien Giang Province, Vietnam. Bacteria were isolated on Pikovskaya’s agar media supplemented with 1% NaCl, and the amount of phosphorus dissolved in liquid NBRIP was supplemented with various concentrations of NaCl via molybdate coloration to evaluate the salt tolerance and phosphorus solubility of the isolated bacterial strains. The result showed that from 8 saline soil samples, a total of 15 strains of phosphorus solubilizing bacteria were isolated and 2 (code 1.7 and 6.1) of them showed good phosphorus solubilization. In addition, isolates 1.7 and 6.1 exhibited good growth and phosphorus solubilization in liquid NBRIP media supplemented with NaCl at concentrations ranging from 1.0% to 5.0%. Molecular analysis results showed that strains 1.7 and 6.1 were identified as Burkholderia vietnamiensis 1.7 and Priestia aryabhattai 6.1, respectively. These results show that B. vietnamiensis 1.7 and P. aryabhattai 6.1 can be used as biofertilizers for rice cultivation in salty soils in Tien Giang Province, reducing the cost and use of chemical fertilizers.

##plugins.themes.bootstrap3.article.details##

References
Ahmad M, Adil Z, Hussain A, Mumtaz MZ, Nafees M, Ahmad I, Jamil M. 2019. Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pak J Agric Sci 56 (2): 283-289. DOI: 10.21162/PAKJAS/19.7285.
Al-Khaishany MY, Al-Qurainy FH, Alaraidh IA, Barakat MN, Elshafei AA, Siddiqui MH, Alamri SA, Ali HM, Alsahli AA, Alzahrani SM, Ishfaq M. 2018. Genetic variation of wheat for salt tolerance based on physiological and agronomic traits. Intl J Agric Biol 20 (12): 2853-2861. DOI: 10.17957/IJAB/15.0845.
Ames BN. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in Enzymology. Academic Press, Cambridge. DOI: 10.1016/0076-6879(66)08014-5.
Ate? Ö, Çakmakçi R, Yalçin G, Ta?pinar K, Alvero?lu V. 2022. Isolation and characterization of phosphate solubilizing bacteria and effect of growth and nutrient uptake of maize under pot and field conditions. Commun Soil Sci Plant Anal 53 (16): 2114-2124. DOI: 10.1080/00103624.2022.2070632.
Bautista?Cruz A, Antonio?Revuelta B, del Carmen Martínez Gallegos V, Báez?Pérez A. 2019. Phosphate?solubilizing bacteria improve Agave angustifolia Haw. growth under field conditions. J Sci Food Agric 99 (14): 6601-6607. DOI: 10.1002/jsfa.9946.
Chen A, Arai Y. 2023. A review of the reactivity of phosphatase controlled by clays and clay minerals: Implications for understanding phosphorus mineralization in soils. Clay Clay Miner 71 (2): 119-142. DOI: 10.1007/s42860-023-00243-7.
Cherif-Silini H, Silini A, Ghoul M, Yahiaoui B, Arif F. 2013. Solubilization of phosphate by the Bacillus under salt stress and in the presence of osmoprotectant compounds. Afr J Microbiol Res 7 (37): 4562-4571. DOI: 10.5897/AJMR2013.5696.
Chouyia FE, Romano I, Fechtali T, Fagnano M, Fiorentino N, Visconti D, Idbella M, Ventorino V, Pepe O. 2020. P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Front Plant Sci 7: 1137. DOI: 10.3389/fpls.2020.01137.
Damo JL, Ramirez MD, Agake SI, Pedro M, Brown M, Sekimoto H, Yokoyama T, Sugihara S, Okazaki S, Ohkama-Ohtsu N. 2022. Isolation and characterization of phosphate solubilizing bacteria from paddy field soils in Japan. Microbes Environ 37 (2): ME21085. DOI: 10.1264/jsme2.ME21085.
de Boer MA, Wolzak L, Slootweg JC. 2019. Phosphorus: Reserves, production, and applications. In: Ohtake H, Tsuneda S (eds). Phosphorus Recovery and Recycling. Springer, Singapore. DOI: 10.1007/978-981-10-8031-9_5.
El Sabagh A, Hossain A, Barutçular C, Iqbal MA, Islam MS, Fahad S, Sytar O, Çi? F, Meena RS, Erman M. 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan IA, Adnan M (eds). Environment, Climate, Plant and Vegetation Growth. Springer, Cham. DOI: 10.1007/978-3-030-49732-3_20.
El-Komy HMA. 2005. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol Biotechnol 43 (1): 19-27.
Etesami H, Alikhani HA. 2019. Halotolerant plant growth-promoting fungi and bacteria as an alternative strategy for improving nutrient availability to salinity-stressed crop plants. In: Kumar M, Etesami H, Kumar V (eds). Saline Soil-based Agriculture by Halotolerant Microorganisms. Springer, Singapore. DOI: 10.1007/978-981-13-8335-9_5.
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. 2019. Advances in understanding salt tolerance in rice. Theor Appl Genet 132: 851-870. DOI: 10.1007/s00122-019-03301-8.
Ghosh R, Mandal NC. 2020. Use of plant growth-promoting Burkholderia species with rock phosphate-solubilizing potential toward crop improvement. In: Singh JS, Vimal SR (eds). Microbial Services in Restoration Ecology. Elsevier, Amsterdam. DOI: 10.1016/B978-0-12-819978-7.00010-5.
Gillis M, Van Van T, Bardin RE, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Intl J Syst Evol Microbiol 45 (2): 274-289. DOI: 10.1099/00207713-45-2-274.
Hwang HH, Chien PR, Huang FC, Yeh PH, Hung SHW, Deng WL, Huang CC. 2022. A plant endophytic bacterium Priestia megaterium strainBP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses. Microorganisms 10: 2047. DOI: 10.3390/microorganisms10102047.
Iftikhar A, Farooq R, Akhtar M, Khalid H, Hussain N, Ali Q, Malook SU, Ali D. 2024. Ecological and sustainable implications of phosphorous-solubilizing microorganisms in soil. Discov Appl Sci 6: 33. DOI: 10.1007/s42452-024-05683-x.
Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD. 2012. New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82 (3): 666-677. DOI: 10.1111/j.1574-6941.2012.01437.x.
Johnston AE, Poulton PR, Fixen PE, Curtin D. 2014. Phosphorus: Its efficient use in agriculture. Adv Agron 123: 177-228. DOI: 10.1016/B978-0-12-420225-2.00005-4.
Justé A, Lievens B, Klingeberg M, Michiels CW, Marsh TL, Willems KA. 2008. Predominance of Tetragenococcus halophilus as the cause of sugar thick juice degradation. Food microbiol 25 (2): 413-421. DOI: 10.1016/j.fm.2007.10.012.
Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA. 2021. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: A review. Cells 10 (6): 1551. DOI: 10.3390/cells10061551.
Kontgis C, Schneider A, Ozdogan M, Kucharik C, Duc NH, Schatz J. 2019. Climate change impacts on rice productivity in the Mekong River Delta. Appl Geogr 102: 71-83. DOI: 10.1016/j.apgeog.2018.12.004.
Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, Khan N, El Enshasy HA. 2021. Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26 (7): 1894. DOI: 10.3390/molecules26071894.
Linh NTD, Bleys B. 2024. Determinants of farmers' climate change adaptation strategies: A case of saltwater intrusion and rice production in the central coastal region of Vietnam. Intl J Clim Chang: Impacts Responses 16 (1): 1. DOI: 10.18848/1835-7156/CGP/v16i01/1-20.
Liu T, Dong X, Guo K, Wang J, Liu X, Sun H. 2024. Effects of fertilizer types and application levels on phosphorus availability of saline soils and crops: A meta?analysis. Land Degrad Dev 35 (13): 4068-4080. DOI: 10.1002/ldr.5205.
Malhotra H, Vandana Sharma S, Pandey R. 2018. Phosphorus nutrition: Plant growth in response to deficiency and excess. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds). Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. DOI: 10.1007/978-981-10-9044-8_7.
Mustafa G, Akhtar MS, Abdullah R. 2019. Global concern for salinity on various agro-ecosystems. In: Akhtar M (eds). Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer, Singapore. DOI: 10.1007/978-981-13-8801-9_1.
Neelam T, Meenu S. 2003. Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria. Indian J Microbiol 43: 37-40.
Negacz K, Malek Ž, de Vos A, Vellinga P. 2022. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J Arid Environ 203: 104775. DOI: 10.1016/j.jaridenv.2022.104775.
Nguyen KN, Nguyen TKO, Nguyen HT, Le TX, Duong MV, Chau TAT. 2023. Isolation and selection of salt-tolerant bacterial strains capable of solubilizing phosphorus and synthesizing phosphatase enzyme from rice-shrimp soil in Mekong River Delta, Vietnam. Appl Environ Biotechnol 7 (2): 5-14.
Nguyen TD, Nguyen TK, Cao ND. 2012. Isolation and identification of phosphorus and potassium-solubilizing bacteria from weathered materials in granite rock of sap mountain, An Giang province. Can Tho Univ J Sci 24: 179-86.
Nithyapriya S, Lalitha S, Sayyed RZ, Reddy MS, Dailin DJ, El Enshasy HA, Luh Suriani N, Herlambang S. 2021. Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability 13 (10): 5394. DOI: 10.3390/su13105394.
Park KH, Lee OM, Jung HI, Jeong JH, Jeon YD, Hwang DY, Lee CY, Son HJ. 2010. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86: 947-955. DOI: 10.1007/s00253-009-2388-7.
Pathak R, Paudel V, Shrestha A, Lamichhane J, Gauchan DP. 2018. Isolation of phosphate solubilizing bacteria and their use for plant growth promotion in tomato seedling and plant. Kathmandu Univ J Sci Engineering Technol 13: 61-70. DOI: 10.3126/kuset.v13i2.21284.
Paulucci NS, Gallarato LA, Reguera YB, Vicario JC, Cesari AB, de Lema MBG, Dardanelli MS. 2015. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 173: 1-9. DOI: 10.1016/j.micres.2014.12.012.
Pereira SI, Castro PM. 2014. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol Eng 73: 526-535. DOI: 10.1016/j.ecoleng.2014.09.060.
Pessarakli M, Szabolcs I. 2019. Soil salinity and sodicity as particular plant/crop stress factors. In Handbook of Plant and Crop Stress, Fourth Edition. CRC Press, Boca Raton. DOI: 10.1201/9781351104609.
Phringpaen W, Aiedhet W, Thitithanakul S, Kanjanasopa D. 2023. Ability of phosphate-solubilizing bacteria to enhance the growth of rice in phosphorus-deficient soils. Trends Sci 20 (12): 7032-7032. DOI: 10.48048/tis.2023.7032.
Prakash J, Arora NK. 2019. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 9 (4): 126. DOI: 10.1007/s13205-019-1660-5.
Reimer LC, Vetcininova A, Carbasse JS, Söhngen C, Gleim D, Ebeling C, Overmann J. 2019. Bac Dive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res 47 (D1): 631-636. DOI: 10.1093/nar/gky879.
Sharma A, Dev K, Sourirajan A, Choudhary M. 2021. Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. J Genet Eng Biotechnol 19 (1): 99. DOI: 10.1186/s43141-021-00186-3.
Song C, Wang W, Gan Y, Wang L, Chang X, Wang Y, Yang W. 2022. Growth promotion ability of phosphate?solubilizing bacteria from the soybean rhizosphere under maize-soybean intercropping systems. J Sci Food Agric 102 (4): 1430-1442. DOI: 10.1002/jsfa.11477.
Vu HTD Tran DD, Schenk A, Nguyen CP, Vu HL, Oberle P, Trinh VC, Nestmann F. 2022. Land use change in the Vietnamese Mekong Delta: New evidence from remote sensing. Sci Tot Environ 813: 151918. DOI: 10.1016/j.scitotenv.2021.1519.
Walpola BC, Song JS, Keum MJ, Yoon MH. 2012. Evaluation of phosphate solubilizing potential of three Burkholderia species isolated from green house soils. Korean J Soil Sci Fert 45 (4): 602-609. DOI: 10.7745/KJSSF.2012.45.4.602.
Waithaisong K. 2024. Detection of available phosphorus and diversity of culturable phosphate-solubilizing bacteria after organic farming conversion. Asian J Agric 8: 124-133. DOI: DOI: 10.13057/asianjagric/g080206
Wu F, Li J, Chen Y, Zhang L, Zhang Y, Wang S, Shi X, Li L, Liang J. 2019. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera abel. Forests 10 (4): 348. DOI: 10.3390/f10040348.
Yu LY, Huang HB, Wang XH, Li S, Feng NX, Zhao HM, Huang XP, Li YW, Li H, Cai QY, Mo CH. 2019. Novel phosphate-solubilising bacteria isolated from sewage sludge and the mechanism of phosphate solubilisation. Sci Tot Environ 658: 474-484. DOI: 10.1016/j.scitotenv.2018.12.166.
Zörb C, Geilfus CM, Dietz KJ. 2019. Salinity and crop yield. Plant Biol 21: 31-38. DOI: 10.1111/plb.1288.