Isolation and characterization of plant growth-promoting rhizobacteria from wild rice (Oryza rufipogon) in the Mekong Delta, Vietnam

##plugins.themes.bootstrap3.article.main##

NGUYEN TRI YEN CHI
NGUYEN LU KHOI MINH
QUACH VAN CAO THI

Abstract

Abstract. Chi NTY, Minh NLK, Thi QVC. 2025. Isolation and characterization of plant growth-promoting rhizobacteria from wild rice (Oryza rufipogon) in the Mekong Delta, Vietnam. Biodiversitas 26: 1221-1228. Rhizospheric bacteria play a very crucial role in crops, especially rice. In contrast to cultivated varieties, wild rice (Oryza rufipogon), which is abundantly found in Mekong Delta canals, may have distinct rhizobacterial populations. Therefore, the objective of this work was to isolate and characterize Plant Growth-Promoting Rhizobacteria (PGPR) from wild rice with the characteristics of nitrogen fixation, phosphate solubilization, and IAA synthesis. A total of 12 bacterial strains, including seven bacterial strains of nitrogen-fixation and five strains of phosphate-solubilizing microbes, from four rhizospheric soil samples of wild rice in Tien Giang and Vinh Long provinces of the Mekong Delta, Vietnam. The results showed that strain B?1.2 had the highest nitrogen fixation activity with NH4+ content of 0.281±0.007 mg/L. In contrast, strain B?1.3, had the highest phosphorus solubilizing ability with a halo diameter of 1.123 ± 0.025 mm. Also, the finding showed that six out of twelve bacterial strains were capable of synthesizing IAA (Indole-3-Acetic Acid), of which strain B?2.3.1 produced the highest IAA with a concentration of 0.053 ± 0.001 mg/L after 8 days of bacterial inoculation. In particular, B?2.3.2, B?1.3, and B?2.4 simultaneously exhibited the ability of nitrogen fixation, phosphate solubilization, and IAA synthesis. The strain B?1.3 was identified as Stenotrophomonas sp. based on colony morphology, biochemical characteristics, and 16S rRNA gene sequencing with 91.74% similarity. To our knowledge, this is the first report of isolation of rhizospheric bacteria from O. rufipogon with the characteristics of nitrogen fixation, phosphorus solubilization, and IAA production in the Mekong Delta, Vietnam.

##plugins.themes.bootstrap3.article.details##

References
Abd El-Mageed TA, Abd El-Mageed SA, El-Saadony MT, Abdelaziz S, Abdou NM. 2022. Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice 15 (1): 16. DOI: 10.1186/s12284-022-00564-6.
Ahbar AI, Othman NMI, Shamsuddin AS, Sari NA. 2024. Pelletized plant growth-promoting bacteria derived from fermented rice water and its influence in pakchoy growth enhancement. Jurnal Teknologi 86 (6): 69-76. DOI: 10.11113/jurnalteknologi.v86.21087.
Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci 26 (1): 1-20. DOI: 10.1016/j.jksus.2013.05.001.
Alawiye TT, Babalola OO. 2019. Bacterial diversity and community structure in typical plant rhizosphere. Diversity 11: 179. DOI: 10.3390/d11100179.
Amri M, Rjeibi MR, Gatrouni M, Mateus DMR, Asses N, Pinho HJO, Abbes C. 2023. Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms 11 (3): 783. DOI: 10.3390/microorganisms11030783.
Andrade LF, de Souza GLOD, Nietsche S, Xavier AA, Costa MR, Cardoso AMS, Pereira MCT, Pereira DFGS. 2014. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52 (1): 27-34. DOI: 10.1007/s12275-014-3019-2.
Angeles-Shim RB, Shim J, Vinarao RB, Lapis RS, Singleton JJ. 2020. A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa). PLoS One 15 (2): e0229155. DOI: 10.1371/journal.pone.0229155.
Awais M, Tariq M, Ali A, Ali Q, Khan A, Tabassum B, Nasir IA, Husnain T. 2015. Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatal Agric Biotechnol 11: 312-321. DOI: 10.1016/j.bcab.2017.07.018.
Brandi M, Clark EM, Lindow SE. 2011. Characterization of the Indole-3-Acetic Acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Can J Microbiol 42 (6): 586-592. DOI: 10.1139/m96-079.
Çakmakç? R, Mosber G, Milton AH, Alatürk F, Ali B. 2020. The effect of auxin and auxin producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Curr Microbiol 77 (4): 564-577. DOI: 10.1007/s00284-020-01917-4.
C?m NTH, Hu?n TV, Tân TT, Quang NM, Uyên LTT, Tr?ng NV, H?ng NH, Thùy TTB, Hu? TT, An ?TK, Duyên TN, Nam NV. 2023. Effect of two rhizobacteria strains Stenotrophomonas maltophilia RDL1B41 and Enterobacter mori RDL3B74 on the growth, development and yield of purple rice under plastic-house conditions. Tay Nguyen J Sci 58: 47-54. DOI: 10.5281/zenodo.7794024. [Vietnamese]
Chang J, Tian L, Leite MFA, Sun Y, Shi S, Xu S, Wang J, Chen H, Chen D, Zhang J, Tian C, Kuramae EE. 2022. Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome. Microbiome 10 (1): 196. DOI: 10.1186/s40168-022-01360-6.
Chen D, Saeed M, Ali MNHA, Raheel M, Ashraf W, Hassan Z, Hassan MZ, Farooq U, Hakim MF, Rao MJ, Naqvi SAH, Moustafa M, Al-Shehri M, Negm S. 2023. Plant Growth Promoting Rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy 13 (2): 550. DOI: 10.3390/agronomy13020550.
Chen L, Yin F, Zhang D, Xiao S, Zhong Q, Wang B, Ke X, Ji Z, Wang L, Zhang Y, Jiang C, Liu L, Li J, Lu Y, Yu T, Cheng Z. 2022. Unveiling a novel source of resistance to bacterial blight in medicinal wild rice, Oryza officinalis. Life 12 (6): 827. DOI: 10.3390/life12060827.
Chi T. 2024. Vietnam is the third rice exporter in the world: Great opportunity for the rice industry to "transform". https://stockbiz.vn/ tin-tuc/viet-nam-xuat-khau-gao-thu-3-cua-the-gioi-co-hoi-lon-de-nganh- lua-gao-chuyen-minh/23502605 [December 9, 2024]
de Andrade LA, Santos CHB, Frezarin ET, Sales LR, Rigobelo EC. 2023. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms 11 (4): 1088. DOI: 10.3390/microorganisms11041088.
Fariman AB, Abbasiliasi A, Abdullah SNA, Saud HM, Wong M-Y. 2022. Stenotrophomonas maltophilia isolate UPMKH2 with the abilities to suppress rice blast disease and increase yield a promising biocontrol agent. Physiol Mol Plant Pathol 121: 101872. DOI: 10.1016/j.pmpp.2022.101872.
Glick BR. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012: 963401. DOI: 10.6064/2012/963401.
Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. 2023. A look at plant-growth-promoting bacteria. Plants 12 (8): 1668. DOI: 10.3390/plants12081668.
Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol 26 (1): 192-195. DOI: 10.1104/pp.26.1.192.
Huy NA, Hi?p NH. 2018. Isolation and identification of salt tolerant bacteria capable in nitrogen fixation and IAA synthesis from rice - shrimp soils in Bac Lieu, Soc Trang and Kien Giang provinces. CTU J Sci 54 (1B): 7-12. DOI: 10.22144/ctu.jvn.2018.002. [Vietnamese]
Kairam BS, Sran RS. 2022. Use of crop wild relatives for biotic and abiotic stress tolerance in rice: A review. Pharm Innov 11: 1503-1507.
Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E. 2020. Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol 104 (20): 8549-8565. DOI: 10.1007/s00253-020-10890-8.
Kumar R, Swapnil P, Meena M, Selpair S, Yadav BG. 2022. Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to alleviate abiotic stresses for enhancement of growth and development of medicinal plants. Sustainability 14 (23): 15514. DOI: 10.3390/su142315514.
Lucero CT, Lorda GS, Anzuay MS, Ludueña LM, Taurian T. 2021. Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants. Curr Microbiol 78 (5): 1961-1972. DOI: 10.1007/s00284-021-02469-x.
Mager S, Ludewig U. 2028. Massive loss of DNA methylation in nitrogen, but not in phosphorus-deficient Zea mays roots is poorly correlated with gene expression differences. Front Plant Sci 9: 497. DOI: 10.3389/fpls.2018.00497.
Meng X, Chen W-W, Wang Y-Y, Huang Z-R, Ye X, Chen L-S, Yang L-T. 2021. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS One 16 (2): e0246944. DOI: 10.1371/journal.pone.0246944.
Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L. 2019. A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol 33 (4): 540-552. DOI: 10.1111/1365-2435.13303.
Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170 (1): 265-270. DOI: 10.1111/j.1574-6968.1999.tb13383.x.
Ngh?a NK, Oanh NTK. 2017. Isolation, characterization and identification of phosphate solubilizing bacteria from rice-shrimp rotational farming system in salt affected soil areas of the Mekong Delta of Vietnam. J Biotechnol 15 (1): 121-131. DOI: 10.15625/1811-4989/15/1/12327. [Vietnamese]
Nguyen TH. 2017. An Overview of Agricultural Pollution in Vietnam: The Crops Sector. World Bank, Washington, DC.
Oanh NTP, Minh TB, Pha NT. 2013. Isolation and selection several bacterial strains with the ability of fixing nitrogen and synthesizing Indole Acetic Acid (IAA) from rice rhizosphere soil. CTU J Sci 26 (2013): 82-88. [Vietnamese]
Ohyama T. 2010. Nitrogen as a major essential element of plants. In: Ohyama T, Sueyoshi K (eds). Nitrogen Assimilation in Plants. Research Singpot, Kerala, India.
Olanrewaju OS, Glick BR, Babalola OO. 2017. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33 (11): 197. DOI: 10.1007/s11274-017-2364-9.
Othman R, Naher UA, Yusoff SZ. 2013. Effect of urea-N on growth and indoleacetic acid production of Stenotrophomonas maltophilia (Sb16) isolated from rice growing soils in Malaysia. Chil J Agric Res 73 (2): 187-192. DOI: 10.4067/S0718-58392013000200016.
Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A, Pandey V, Rana N, Cunill JM. 2022. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol 13: 962619. DOI: 10.3389/fmicb.2022.962619.
Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160: 127-133. DOI: 10.1016/j.micres.2004.10.003.
Pha NT, Gi?i T?, Hi?p NH. 2015. Isolation, selection and taxonomic identification of Nitrogen-fixing bacteria group in the soil of rice rhizosphere in the Mekong Delta. CTU J Sci 38: 38-47. [Vietnamese]
Ph??ng NV, Nga MTPN, H??ng TTM, Chung MD, Hà CH, Bình LT. 2020. In vitro screening for plant growth promoting traits and antifungal activity against Magnaporthe oryzea from submerged rice root endophytic bacteria. Proceedings of 2020 Vietnam National Conference on Biotechnology, 568-574. Hue University Publishing house. [Vietnamese]
Qingwei Z, Lushi T, Yu Z, Yu S, Wanting W, Jiangchuan W, Xiaolei D, Xuejiao H, Bilal M. 2023. Isolation and characterization of phosphate solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC Microbiol 23 (1): 221. DOI: 10.1186/s12866-023-02953-3.
Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R. 2018. Improvement of salt tolerance using wild rice genes. Front Plant Sci 8: 2269. DOI: 10.3389/fpls.2017.02269.
Rahman ML, Jiang W, Chu SH, Qiao Y, Ham T-H, Woo M-O, Lee J, Khanam MS, Chin J-H, Jeung J-U, Brar DS, Jena KK, Koh H-J. 2009. High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119 (7): 1237-1246. DOI: 10.1007/s00122-009-1125-z.
Ramly IS, Othman NMI, Shamsuddin AS, Zuan ATK, Zakaria NH, Majid FAA, Hamid NA. 2024. Enhanced rice (Oryza sativa L.) plant growth and nutrient contents during the vegetative stage through zinc solubilizing bacterial bead inoculation. Malays Appl Biol 53 (5): 87-97. DOI: 10.55230/mabjournal.v53i5.3113.
Riddech N, Ma NY, Ho PN, Sarin P. 2022. Plant growth promoting of rhizobacteria and endophytic bacteria in vegetable rhizosphere and root samples. J Pure Appl Microbiol 16 (3): 1909-1921. DOI: 10.22207/jpam.16.3.38.
Saeed Q, Xiukang W, Haider FU, Ku?erik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. 2021. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Intl J Mol Sci 22 (19): 10529. DOI: 10.3390/ijms221910529.
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
Shameer S, Prasad TNVKV. 2018. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84: 603-615. DOI: 10.1007/s10725-017-0365-1.
Sharma A, Shankhdhar D, Sharma A, Shankhdhar SC. 2014. Growth promotion of the rice genotypes by PGPRS isolated from rice rhizosphere. J Soil Sci Plant Nutr 14 (2): 505-517. DOI: 10.4067/S0718-95162014005000040.
Sherpa MT, Sharma L, Bag N, Das S. 2021. Isolation, characterization, and evaluation of native rhizobacterial consortia developed from the rhizosphere of rice grown in organic state Sikkim, India, and their effect on plant growth. Front Microbiol 12: 713660 DOI: 10.3389/fmicb.2021.713660.
Solórzano L. 1969. Determination of ammonia in natural waters by the phenol hypochlorite methods. Limnol Oceanogr 14 (5): 799-801. DOI: 10.4319/lo.1969.14.5.0799.
Suliasih, Widawati S. 2021. Inorganic and organic phosphate solubilization potential of Stenotrophomonas maltophilia. IOP Conf Ser: Earth Environ Sci 948: 012054. DOI: 10.1088/1755-1315/948/1/012054.
Tam HM, Thanh DTN, Di?p CN. 2020. Functional and molecular characterization of plant growth promoting bacteria associated with sugarcane cultivated in Tay Ninh Province, Vietnam. GSC Biol Pharm Sci 11 (02): 265-277. DOI: 10.30574/gscbps.2020.11.2.0136.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 (12): 2725-2729. DOI: 10.1093/molbev/mst197.
Thanh CV, Hirata Y. 2002. Seed storage protein diversity of three rice species in the Mekong Delta. Biosphere Conserv 4 (2): 59-67. DOI: 10.20798/biospherecons.4.2_59.
Thanh ?TN, M? NTX, ?i?p CN. 2016. Indole acetic acid and siderophore production by selected isolates of plant associated bacteria and their effects on growth of maize (Zea mays L.) in pot experiments. CTU J Sci 47: 59-67. DOI: 10.22144/ctu.jvn.2016.601. [Vietnamese]
Thanh DTN, Tram DTT. 2018. Isolation and characterization of plant growth promoting rhizobacteria in black pepper (Piper nigrum L.) cultivated in Chon Thanh and Loc Ninh Districts of Binh Phuoc Province, Vietnam. Intl J Innov Eng Technol 10 (1): 1-10. DOI: 10.21172/ijiet.101.01.
Tian Q, Gong Y, Liu S, Ji M, Tang R, Kong D, Xue Z, Wang L, Hu F, Huang L, Qin S. 2023. Endophytic bacterial communities in wild rice (Oryza officinalis) and their plant growth-promoting effects on perennial rice. Front Plant Sci 14: 1184489. DOI: 10.3389/fpls.2023.1184489.
Timofeeva AM, Galyamova MR, Sedykh SE. 2023. Plant growth-promoting soil bacteria: Nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants 12 (24): 4074. DOI: 10.3390/plants12244074.
Tu VH, Can ND, Takahashi Y, Kopp SW, Yabe M. 2018. Technical and environmental efficiency of eco-friendly rice production in the upstream region of the Vietnamese Mekong delta. Environ Dev Sustain 21: 2401-2424. DOI: 10.1007/s10668-018-0140-0.
Uphoff N, Dazzo FB. 2016. Making rice production more environmentally-friendly. Environments 3: 12. DOI: 10.3390/environments3020012.
Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A. 2016. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56 (1): 44-58. DOI: 10.1002/jobm.201500459.
Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57: 1-45. DOI: 10.1023/A:1015798428743.
Vy NTP, Thanh DTN, Ngot PV, Tam HM. 2023. Plant growth promotion characterization of endophytic bacteria from Sesbania sesban (L.) Merr. collected in Tan Hung district, Long An Province, Vietnam. GSC Biol Pharm Sci 25: 084-092. DOI: 10.30574/gscbps.2023.25.2.0457.
Walpola BC, Yoon M-H. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. Afr J Microbiol Res 6: 6600-6605. DOI: 10.5897/ajmr12.889.
Wei X, Xie B, Wan C, Song R, Zhong W, Xin S, Song K. 2024. Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy 14 (3): 609. DOI: 10.3390/agronomy14030609.
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697-703. DOI: 10.1128/jb.173.2.697-703.1991.
Xa LT, Nghia NK. 2019. Isolation and selection of biological nitrogen fixing and indole-3-acetic acid synthesizing bacteria from different cropping systems in Soc Trang province, Vietnam. Intl J Innov Stud Sci Eng Technol 5 (11): 15-23.
Yao Z, Chen Y, Luo S, Wang J, Zhang J, Zhang J, Tian C, Tian L. 2022. Culturable screening of plant growth-promoting and biocontrol bacteria in the rhizosphere and phyllosphere of wild rice. Microorganisms 10 (7): 1468. DOI: 10.3390/microorganisms10071468.
Yichie Y, Brien C, Berger B, Roberts TH, Atwell BJ. 2018. Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. Rice 11 (1): 66. DOI: 10.1186/s12284-018-0257-7.
Zhang X, Tong J, Dong M, Akhtar K, He B. 2022. Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production. PeerJ 10: e12677. DOI: 10.7717/peerj.12677.
Zhang Z, Liu T, Zhang X, Xie J, Wang Y, Yan R, Jiang Y, Zhu D. 2021. Cultivable endophytic bacteria in seeds of Dongxiang wild rice and their role in plant-growth promotion. Diversity 13 (12): 665. DOI: 10.3390/d13120665.
Zuluaga MYA, de Oliveira ALM, Valentinuzzi F, Jayme NS, Monterisi S, Fattorini R, Cesco S, Pii Y. 2023. An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: In situ study on cucumber. BMC Microbiol 23 (1): 184. DOI: 10.1186/s12866-023-02918-6.

Most read articles by the same author(s)