Exploring the benefit of arbuscular mycorrhizal Glomus spp. in improving available soil P and crop growth of sorghum cultivated on ex-coal mine soil

##plugins.themes.bootstrap3.article.main##

BUDI PRASETYA
HERLIANA ARFIYANTI
NOVI ARFARITA

Abstract

Abstract. Prasetya B, Arfiyanti H, Arfarita N. 2024. Exploring the benefit of arbuscular mycorrhizal Glomus spp. in improving available soil P and crop growth of sorghum cultivated on ex-coal mine soil. Biodiversitas 25: 5112-5122. One main problem of ex-coal mining land is low soil phosphate (P) availability and easy binding of phosphate to Fe and Al (hydro)oxide. These conditions affect the abundance and activity of soil microorganisms. Unlike other microbes, mycorrhizae can help root uptake of P that is not available in the inorganic form and make it available for crops. The addition of slow-release phosphate sources - such as rock phosphate, bone meal, and fish meal - are good sources of P nutrients because they are not easily fixed and washed away. This study aimed to improve ex-coal mining land conditions by increasing the level of P availability in soil via the application of various P sources at different dosages to improve mycorrhizal spores and sorghum growth. The pot experiment used a factorial completely randomized block design (CRBD) with 3 different phosphate source type (P), consisting of 3 treatment levels, under the optimum concentration of - P1: rock phosphate; P2: bone meal; and P3: fish meal - and various dose of phosphate source (F) consisting of 5 treatment levels - F0: control; F1: 0.17 g/polybag; F2: 0.29 g/polybag; F3: 0.40 g/polybag; and F4: 0.57 g/polybag-with a total combination of 15 treatments with 4 replications. The combination of the P2F3 treatment (bone meal dose of 0.40 g/polybag) was the best dose. It was effective in increasing the number of Arbuscular Mycorrhizae (AM) spores by 273 and increasing soil available P by 28.24 mg/kg. The P1F4 (natural phosphate with 0.57 g polybag-1) was the best treatment and produced the greater fresh weight and dry weight biomass of sorghum at about 31.86 g and 10.47 g, respectively. The plant height was increased by 5 to 35%, but there was no effect on the number of sorghum leaves.

##plugins.themes.bootstrap3.article.details##

References
Adiningsih Y, Sitorus S. 2017. Utilization of fish bones as an alternative phosphorus enrichment for NPK fertilizer based on palm oil industry sludge waste: Proceedings of the 1st National Seminar. Samarinda Industrial Research and Standardization Center, Samarinda, 20 Juli 2017. [Indonesian]
Ajeigbe HA, Folorunso M, Akinseye FM, Jonah J, Ayuba KA. 2018. Sorghum yield and water use under phosphorus fertilization applications in the Sudan savanna of Nigeria. Glob Adv Res J Agric Sci 7 (8): 245-257. DOI: 10.1155/2018/7676058.
Alotaibi MO, Saleh AM, Sobrinho RL, Sheteiwy MS, El-Sawah AM, Mohammed AE, Elgawad HA. 2021. Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. J Fungi 7 (7): 531. DOI: 10.3390/jof7070531.
Amy SW, Dani U, Nu’man H, Muslim D, Nasruddin D, Nuryahya H, Nurhasan R, Agustin DS. 2023. The forming of acid mine drainage based on characteristics of coal mining, East Kalimantan, Indonesia. J Ecol Eng 24 (7): 301-310. DOI: 10.12911/22998993/162551.
Bagyaraj DJ, Sharma MP, Maiti D. 2015. Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108 (7): 1288-1293.
Berruti A, Borriello R, Lumini E, Scariot V, Bianciotto V, Balestrini R. 2013. Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscular inside root cells. Front Plant Sci 4: 135 DOI: 10. 3389/fpls.2013.00135.
Campos P, Borie F, Cornejo P, Lopez-Raez JA, Lopez-Garcia A, Seguel A. 2018. Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping?. Front Plant Sci 9: 752. DOI: 10.3389/fpls.2018.00752.
Chauhan P, Sharma N, Tapwal A, Kumar A, Verma GS, Meena M, Seth CS, Swapnil P. 2023. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability 15 (19): 14643. DOI: 10.3390/su151914643.
Cheluvaraj LN, Dhananjaya BC, Ashok M, Veeranna HK, Chidanandappa HM. 2020. Influence of fish bone meal on performance of soybean (Glycine max L.) in sandy loam soils of Chikkamagaluru District of Karnataka. Intl J Curr Microb Appl Sci 9 (10): 2297-2305. DOI: 10.20546/ijcmas.2020.910.277.
Cheng Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. 2023. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Sci Total Environ 901: 16646. DOI: 10.1016/j.scitotenv.2023.166468.
Cozzolino V, DiMeo V, Piccolo A. 2013. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explo 129: 40-44. DOI: 10.1016/j.gexplo.2013.02.006.
Crous KY, Ellsworth. 2020. Probing the inner sanctum of leaf phosphorus: Measuring the fractions of leaf P. Plant Soil 454: 77-85. DOI: 10.1007/s11104-020-04657-3.
El-Sherbeny TMS, Mousa AM, El-Sayed ER. 2022. Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi J Biol Sci 29 (1): 331-338. DOI: 10.1016/j.sjbs.2021.08.094.
Feng YY, He J, Turner NC, Siddique KHM, Li FM. 2021. Phosphorus supply increases internode length and leaf characteristics, and increases dry matter accumulation and seed yield in soybean under water deficit. Agronomy 11: 930. DOI: 10.3390/agronomy11050930.
Flatian AN, Slamet S, Citraresmini A. 2018. Phosphorus (P) uptake by sorghum plant derived from 2 types of P fertilizers traced by isotopic technique (32P). Jurnal Ilmiah Aplikasi Isotop dan Radiasi 14 (2): 109-115. DOI: 10.17146/jair.2018.14.2.4529. [Indonesian]
Getinet H, Atinafu O. 2022. Effect of phosphorus fertilizer rates on grain yield and yield components of sorghum (Sorghum bicolor L.) at Kersa District, Jimma Zone, and South western Ethiopia. J Aquac Fish 6: 049. DOI: 10.24966/AAF-5523/100049.
Hart A, Ebiundu K, Peretomode E, Onyeaka H, Nwabor OF, Obileke K. 2022. Value-added materials recovered from waste bone biomass: Technologies and applications. Roy Soc Chem Adv 12 (34): 22302-22330. DOI: 10.1039/d2ra03557j.
Hasyiati R, Wulandari N, Haidilianda. 2018. Diversity of arbuscular mycorrhizal fungi (AMF) in several tree species in the Deudap Pulo Mountains of Aceh, Aceh Besar Regency: Proceedings of a Biotics Seminar. Biology Education Study Program Faculty of Tarbiyah and Teacher Training Ar-Raniry State Islamic University Banda Aceh, Aceh. [Indonesian]
He J, Jin Y, Turner NC, Chen Z, Liu HY, Wang XL. Siddique KH, Li FM. 2019. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybeans subjected to water shortage. Environ Exp Bot 166: 103816. DOI: 10.1016/j.envexpbot.2019.103816.
Higo M, Isobe K, Kang DJ, Ujiie K, Drijber RA, Ishii R. 2010. Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod Sci 13 (1): 74-79.
Hindumathi A, Reddy B. 2011. Occurrence and distribution of arbuscular mycorrhizal fungi and microbial flora in the rhizosphere soils of mungbean [Vigna radiata (L.) Wilczek] and soybean [Glycine max (L.) Merr.] from Adilabad, Nizamabad and Karimnagar districts of Andhra Pradesh state, India. Adv Biosci Biotechnol 2: 275-286. DOI: 10.4236/abb.2011.24040.
Hosokawa N, Ozawa Y, Hayakawa A, Ishikawa Y, Takahashi T. 2022. Effect of active aluminum on soil phosphorus forms in a forested watershed in Akita, Japan. Geoderma 416: 115800. DOI: 10.1016/j.geoderma.2022.115800.
Huey JC, Gopinath SCB, Uda MNA, Zulhaimi HI, Jaafar MN, Kasim FH, Yaakub ARW. 2020. Mycorrhiza: A natural resource assists plant growth under varied soil conditions. Biotech 10 (5): 204. DOI: 10.1007/s13205-020-02188-3.
Indriani NP, Yuwariah Y, Rochana A, Susilawati I, Khairan L. 2016. The role of vesicular arbuscular mycorrhiza (VAM) and rock phosphate application on production and nutritional value of centro legumes (Centrosema pubescens). Legum Res Intl J 39 (6): 987-990. DOI: 10.18805/lr.v39i6.6645.
Ishaq L, Adu Tae ASJ, Airthur MA, Bako PO. 2017. Short Communication: Abundance of arbuscular mycorrhizal fungal spores associated with corn planted with traditional and more modern farming systems at East Nusa Tenggara, Indonesia. Biodiversitas 18 (3): 887-892. DOI: 10.13057/biodiv/d180304.
Ishaq L, Tae ASJA, Airthur MA, Bako PO. 2021. Effect of single and mixed inoculation of arbuscular mycorrhizal fungi and phosphorus fertilizer application on corn growth in calcareous soil. Biodiversitas 22 (4): 1920-1926. DOI: 10.13057/biodiv/d220439.
Jaenudin A, Dukat D, Alaydrus U, Maryuliyanna M. 2023. Effect of planting space and dose of phosphate fertilizer on the development and production of white sorghum (Sorghum bicolor L. Moench) Samurai-2 variety. Jurnal Teknik Pertanian Lampung 12 (2): 431-442. DOI: 10.23960/jtep-l.v12i2.431-442.
Jemo M, Sulieman S, Bekkaoui F, Olomide OAK, Hashem A, Allah EFA, Alqarawi AA, Tran LSP. 2017. Comparative analysis of the combined effects of different water and phosphate levels on growth and biological nitrogen fixation of nine cowpea varieties. Front Plant Sci 8: 2111. DOI: 10.3389/fpls.2017.02111.
Jia X, Liu P, Lynch JP. 2018. Greater lateral root branching density in maize (Zea mays L.) improves phosphorus acquisition from low phosphorus soil. J Exp Bot 69: 4961-4970. DOI: 10.1093/jxb/ery252.
Jiang F, Zhang L, Zhou J, George TS, Gu Feng G. 2020. Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol 230 (1): 304-315. DOI: 10.1111/nph.17081.
Jiang M, Caldararu S, Zaehle S, Ellsworth DS, Medlyn BE. 2019. Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytol 222 (3): 1223-1229. DOI: 10.1111/nph.15688.
Johan PD, Ahmed OH, Omar L, Hasbullah NA. 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy 11 (10): 2010. DOI: 10.3390/agronomy11102010.
Koziol L, Schultz PA, Bever JD, House G, Bauer J, Middleton E. 2017. A Practical Guide to Inoculation with Arbuscular Mycorrhizal Fungi in Ecological Restoration. Department of Defense Strategic Environmental Research and Development Program (SERDP), United States.
Kumar A, Kumar A, Patel H. 2018. Role of microbes in phosphorus availability and acquisition by plants. Intl J Curr Microb Appl Sci 7 (5): 1344-1347. DOI: 10.20546/ijcmas.2018.705.161.
Kumar P, Dwivedi P, Upadhyay SK. 2024. Optimization of polyamine and mycorrhiza in sorghum plant for removal of hazardous cadmium, Plant Physiol Biochem 214: 108846. DOI: 10.1016/j.plaphy.2024.108846.
Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, Van Ast A. 2007. Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behavi 2 (1): 58-62. DOI: 10.4161/psb.2.1.3884.
Liu W, Zhang Y, Jiang S, Deng Y, Christie P, Murray PJ, Li X, Zhang J. 2016. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep 6: 24902. DOI: 10.1038/srep24902.
Mansyur NI, Pudjiwati EH, Murtilaksono A. 2021. Fertilizer and Fertilization. Syiah Kuala University Press, Banda Aceh.
Matheus R, Kantur D, Levis LR. 2024. Using soil amendments and mycorrhiza to improve chemical properties of degraded calcareous soil and yield of sorghum in dryland. J Degrad Mining Land Manag 11 (3): 5673-5681. DOI: 10.15243/jdmlm.2024.113.5673.
Meng X, Chen WW, Wang YY, Huang ZR, Huang ZR, Ye X, Chen LS, Yang LT. 2021. Effect of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS One 16 (2): e0246944. DOI: 10.1371/journal.pone.0246944.
Mori A, Fukuda T, Vejchasarn P, Nestler J, Pariasca-Tanaka, J, Wissuwa M. 2016. The role of root size versus root efficiency in phosphorus acquisition in rice. J Exp Bot 67: 1179-1189. DOI: 10.1093/jxb/erv557.
Mori T, Lu X, Aoyagi R, Mo J. 2018. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct Ecol 32 (5): 1145-1154. DOI: 10.1111/1365-2435.13043.
Muhammad SY, Abdulmumini BR, Sani K, Zaharaddeen S. 2018. Effect of organic and inorganic fertilizer on the growth and yield of sorghum (Sorghum bicolor (L.) Moench) in Bauchi state, Nigeria. GSC Biol Pharm Sci 02 (01): 025-031. DOI: 10.30574/gscbps.2018.2.1.0053.
Mukhongo RW, Tumuhairwe JB, Ebanyat P, Abdel-Gadir AH, Thuita M, Masso C. 2016. Production and use of arbuscular mycorrhizal fungi inoculum in Sub-Saharan Africa: Challenges and ways of improving. Intl J Soil Sci 11 (3): 108-122. DOI: 10.3923/ijss.2016.
Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Ekprasert J, Cooper J, Boonlue S. 2021. Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci Rep 11 (1): 6501. DOI: 10.1038/s41598-021-86042-3.
Namugwanya M, Tenywa JS, Otabbong E, Mubiru DN, Masamba TA. 2014. Development of common bean (Phaseolus vulgaris L.) production under low soil phosphorus and drought in Sub-Saharan Africa: A Review. J Sustain Dev 7: 128. DOI: 10.5539/jsdv7n5p128.
Novri N, Kamal M, Sunyoto S, Hidayat KF. 2015. Response growth and yield of three varieties of sorgum (Sorghum bicolor (L.) Moench) ratoon toward applying organic matter at first sorgum cultivation. Jurnal Agrotek Tropika 3 (1): 49-55. DOI: 10.23960/jat.v3i1.1918. [Indonesian]
Nugraha HA, Setyawan D, Saleh E. 2024. Acid mine drainage prevention through the dry coating method using fly ash and bottom ash. Ecol Eng Environ Technol 25: 102-111. DOI: 10.12912/27197050/175860.
Nurhayati. 2019. Propagation of mycorrhiza using the pot culture method. Wahana Inovasi 8 (1): 8-13.
Nuridayati SS, Prasetya B, Kurniawan S. 2019. Spreading various types of arbuscular mycorrhiza in various types of host plants. J Soil Land Res 6 (2): 1375-1385. DOI: 10.21776/ub.jtsl.2019.006.2.18.
Ortas I, Bykova A. 2018. The effect of mycorrhiza inoculation and phosphorus application on phosphorus efficiency of wheat plants. Commun Soil Sci Plant Anal 49 (10): 1199-1207. DOI: 10.1080/00103624.2018.145584and.
Panday D, Bhusal N, Das S, Ghalehgolabbehbahani A. 2024. Rooted in nature: The rise, challenges, and potential of organic farming and fertilizers in agroecosystems. Sustainability 16 (4): 1530. DOI: 10.3390/su16041530.
Pangaribuan N. 2014. Trapping of indigenous mycorrhiza fungi from physic corn and nuts at peatland West Kalimantan. Jurnal Agro 1 (1): 50-60. DOI: 10.15575/81. [Indonesian]
Penn CJ, Camberato JJ. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9 (6): 120. DOI: 10.3390/agriculture9060120.
Prasetya B, Ukhtansyah IU. 2020. Pengaruh pupuk organik dan batuan fosfat alam pada inceptisol sebagai media tanam terhadap perbanyakan Mikoriza Arbuskula (MA) dengan berbagai tanaman inang. Jurnal Tanah dan Sumberdaya Lahan 7 (1): 109-119. DOI: 10.21776/ub.jtsl.2020.007.1.14. [Indonesian]
Prayoga MH, Prasetya B. 2021. Exploration of indigenous arbuscular mycorrhiza in rhizosphere of post-coal mine land vegetation. J Soil Land Res 8 (2): 349-357. DOI: 10.21776/ub.jtsl.2021.008.2.6.
Prayogo C, MH Rusydi NI, Gamal A. 2019. Growth and yield of corn (Zea mays) after treatment with Biofertilizer and an organic P sources cultivated on calcareous soil. Biosci Res 16 (2): 1267-1275.
Prayogo C, Prastyaji D, Prasetya B, Arfarita N. 2021. Structure and composition of major Arbuscular Mycorrhiza (MA) under different farmer management of coffee and pine agroforestry system. AGRIVITA J Agric Sci 43: 146-163. DOI: 10.17503/agrivita.v1i1.2639.
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. 2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J Hazard Mater 402: 123919. DOI: 10.1016/j.jhazmat.2020.123919.
Salam AAA, Elhosainy OH, Zahra WR, Salam AMA, Hashem IA. 2016. Efficiency of P and K biofertilizer in utilizing soil and rock Pand K by sorghum (Sorghum bicolor) grown on light clay torrifluvent soil; 3rd International Conference on Biotechnology Application in Agriculture (ICBAA), Benha University, Moshtohor and Sharm El-Sheikh, Egypt, 5-9 April 2016.
Sharif M, Arif M, Burni T, Khan F, Jan B. 2014. Growth and phosphorus uptake of sorghum plants in salt affected soil as affected by organic materials composted with rock phosphate. Pak J Bot 46 (1):173-180.
Silva LI, Pereira MC, Carvalho AMX, Buttrós VH, Pasqual M, Dória J. 2023. Phosporus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture 13 : 462-495. DOI : 10.3390/agriculture13020462.
Silviera T, Pegoraro RF, Kondo, MK. 2018. Sorghum yield after liming and combinations of phosphorus sources. Revista Brassileira de Engenharia Agrícola e Ambiental 22 (4): 243-248. DOI: 10.1590/1807-1929/agriambi.v22n4p243-248.
Soil Research Center. 2009. Technical Instructions for Chemical Analysis of Soil, Plants, Water and Fertilizer Edition 2. Soil Research Institute, Bogor.
Sowmen S, Sriagtula R, Martaguri I, Mardhiyetti M, Aini Q. 2019. Effect of phosphorus fertilization and inoculation of Arbuscular Mycorrhizal Fungi (AMF) on the growth of BMR mutant sorghum on Ultisol. Pastura 9 (1): 28-31. DOI: 10.24843/Pastura2019.v09i01p08.
Sudová R, Pavlikova D, Macek T, Vosatka M. 2007. The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Appl Soil Ecol 35 (1): 163-173. DOI: 10.1016/j.apsoil.2006.04.004.
Suharno, Soetarto ES, Sancayaningsih RP, Kasiamdari RS. 2017. Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas 18 (1): 433-441. DOI: 10.13057/biodiv/d180156.
Sukarman, Gani RA. 2020. Ex-coal mine lands and their land suitability for agricultural commodities in South Kalimantan. J Degrad Mining Lands Manag 7: 2171-2183. DOI: 10.15243/jdmlm.2020.073.2171.
Sun B, Gao Y, Lynch JP. 2018. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol 177 (1): 90-104. DOI: 10.1104/pp.18.00234.
Sun X, Shi J, Ding G. 2017. Combined effects of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum. Appl Soil Ecol 119: 384-391. DOI: 10.1016/j.apsoil.2017.07.030.
Suparno A, Prabawardani S, Nisa DK, Ruimassa RR. 2023. Identification of arbuscular mycorrhizal fungi associated with Arabica coffee root (Coffea arabica) in the Arfak Mountains region of West Papua, Indonesia. Biodiversitas 24: 3207-3213. DOI: 10.13057/biodiv/d240614.
Tenzin UW, Noirungsee N, Runsaeng P, Noppradit P, Klinnawee L. 2022. Dry-season soil and co-cultivated host plants enhanced propagation of arbuscular mycorrhizal fungalspores from sand dune vegetation in trap culture. J Fungi 8 (10): 1061. DOI: 10.3390/jof8101061.
Togatorop ER, Candra DS, Susilo E. 2021. Growth and results of sorghum (Sorghum bicolor L.) By improving planting media using ameliorant fish bone. PUCUK J Plant Sci 1: 23-35. DOI: 10.58222/pucukv1i1.4.
Viandari NA, Yuniarti A, Machfud Y. 2019. The combination of NPK fertilizer with POC fish waste on pH, soil available P, P uptake, and yield of baby beans (Phaseolus vulgaris L.) on Inceptisols from Jatinangor. Soilrens 17: 25-33. DOI: 10.24198/soilrensv17i2.26361.
Vosnjak M, Likar M, Osterc G. 2021. The effect of mycorrhizal inoculum and phosphorus treatment on growth and flowering of ajania (Ajania pacifica (Nakai) Bremer et Humphries) plant. Horticulturae 7 (7): 178. DOI: 10.3390/horticulture7070178.
Wang F, Sun Y, Shi Z. 2019. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 7 (9): 289. DOI: 10.3390/microorganisms7090289.
Widyati E. 2017. Understanding underground-plants communication to optimize land management. J Land Res 11 (1): 33-42. DOI: 10.2018/jsdlv11i1.8190.
Wilkes TI. 2021. Arbuscular mycorrhizal fungi in agriculture. Encyclopedia 1 (4): 1132-1154. DOI: 10.3390/encyclopedia1040085.
Wulandari D, Nufus M, Faridah E, Maulana AF, Tawaraya K. 2024. Native arbuscular mycorrhizal fungi and Nauclea orientalis for potential reclamation of tropical coal mining areas. Environ Adv 15: 100462. DOI: 10.1016/j.envadv.2023.100462.
Xie X, Hu W, Fan X, Chen H, Tang M. 2019. Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Front Plant Sci 10: 1172. DOI: 10.3389/fpls.2019.01172.
Yasa IW, Sulistyono H, Saadi Y, Hartana H. 2022. Spatial climate forecasting for climatology disaster mitigation. Environ Ecol Res 10 (6) : 786-796. DOI: 10.13189/eer.2022.1000613.
Zaini H, Rahmahwati CA, Bakar SA. 2019. Study of the effectiveness of Pb (II) absorption in polluted water using peanut shell and tofu dregs bioadsorbents. Jurnal Hasil-hasil Penerapan IPTEKS dan Pengabdian Kepada Masyarakat 3 (1): 12-17. DOI: 10.30811/vokasiv3i1.991. [Indonesian]
Zhao W, Gu C, Zhu M, Yan Y, Liu Z, Feng X, Wang X. 2023. Chemical speciation of phosphorus in farmland soils and soil aggregates around mining areas. Geoderma 433: 116465. DOI: 10.1016/j.geoderma.2023.116465.