The impact of different management on pine-based agroforestry system and litter accumulation on the population and activity of cellulolytic bacteria

##plugins.themes.bootstrap3.article.main##

NOVI ARFARITA
YULIA NURAINI
MAYDELLA VISTA PUTRI RINADY
EKO NOERHAYATI
CAHYO PRAYOGO

Abstract

Abstract. Arfarita N, Nuraini Y, Rinady MVP, Noerhayati E, Prayogo C. 2024. The impact of different management on pine-based agroforestry system and litter accumulation on the population and activity of cellulolytic bacteria. Biodiversitas 25: 924-936. Agroforestry leads to the accumulation of organic matter, and the environmental conditions, litter quality, and decomposing organisms influence the rate at which litter decomposes. Litter decomposition in agroforestry systems is slow due to the high lignin and phenolic substances content, low light intensity, and high humidity under the canopy's shading condition. Therefore, a study was carried out to address this issue to isolate cellulolytic bacteria capable of breaking down plant litter using a qualitative cellulase activity testing method. The complete randomized block design and Tukey's test were used to determine the treatment's significance. Six agroforestry systems were examined: pine-coffee, pine-banana, pine-cardamom, pine-cardamom, mixed garden, and citrus. The PK (Pine-Coffee) plot had the highest canopy cover, litter density, and cellulolytic bacteria. The study identified three cellulolytic bacteria isolates (PK1, PK13, and PK10) from the 50 isolated bacteria of PK plot, producing the largest clear zones on CMC media. These identified isolates belonging to the Bacillus genus were Gram-positive bacteria with rod-shaped cells. The different types of litter in agroforestry systems affect the content of lignin, polyphenols, cellulose, and C/N ratios, which can influence the abundance of cellulolytic bacteria and their potential cellulase activity.

##plugins.themes.bootstrap3.article.details##

References
Arifin Z, Gunam I, Antara N, Setiyo Y. 2019. Isolation of cellulose degrading cellulotic bacteria from compost. Journal of Agroindustry Engineering and Management, 7(1): 30-37.
Balla A, Silini A, Cherif H, Bouket A, Boudechicha A, Luptakova L, Alenezi F, Belbahri F. 2022. Screening of cellulolytic bacteria from various ecosystems and their cellulases production under multi-stress conditions. Catalysts, 12: 769. DOI: https://doi.org/10.3390/catal12070769.
Behera B, Sethi B, Mishra R, Dutta S, Thatoi H. 2016. Microbial Cellulases – Diversity and Biotechnology With Reference To Mangrove Environment. Journal of Genetic Engineering and Biotechnology, 15(1), 197–210. DOI:10.1016/j.jgeb.2016.12.001.
Bisht A, Singh S, Kumar M. 2016. Pine needles a source of energy for Himalayan Region. International Journal of Scientific and Technology Research, 3 (12), 161–164. DOI: 10.1109/IICPE.2016.8079505.
Bradford A, Berg B, Maynard D, Wieder W, Wood S. 2016. Understanding the dominant controls on litter decomposition. J Ecol 104: 229-238. DOI: 10.1111/1365-2745.12507.
Chae H, Choi S, Lee S, Cha S, Yang K, Shim J. 2019. Effect of Litter Quality on Needle Decomposition for Four Pine Species in Korea. Forests, 10 (371): 1-15. DOI: 0.3390/f10050371.
Chen Y, Liu Y, Zhang J, Yang W, He R, Deng C. 2018. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Scientific Reports, 8: 14998. DOI: :10.1038/s41598-018-33186-4.
Choi YW, Hodgkiss IJ, Hyde KD. 2005. Enzyme production by endophytes of Brucea javanica. J Agric Sci Technol 1: 55-66.
Comez A, Guner S, Tolunay D. 2021. The effect of stand structure on litter decomposition in Pinus sylvestris L. stands in Turkey. Annals of Forest Science, 78(19): 1-13. DOI: https://doi.org/10.1007/s13595-020-01023-2.
Duffy P. 2014. Vegetation and soil characteristics of pine plantations and naturally regenerated hardwood forests on The Hoosier National Forest. Ecology and Evolutionary Biology Commons, Forest Sciences Commons, and the Soil Science Commons, 319. Retrieved from https://docs. lib.purdue.edu/open_access_theses/319.
Ellania L, Setiawan A, Niswati A. 2016. Litter and Soil Carbon Stock in Cultivated and Natural Area of Intergrated Forest for Conservation Education of Wan Abdul Rachman Great Forest Park. J Trop Soils, 3(21): 171-178. DOI: 10.5400/jts.2016.21.3.171.
Fu Y, Zhang X, Qi D, Feng F. 2021. Changes in leaf litter decomposition of primary Korean pine forests after degradation succession into secondary broad-leaved forests. Ecology and Evolution, 1-14. DOI: 10.1002/ece3.7903.
Garratt MP, Bommarco R, Kleijn D, Martin E, Mortimer SR, Redlich S, Senapathi D, Steffan-Dewenter I, ?witek S, Takacs V, van Gils S. 2018. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21: 1404-1415. DOI: 10.1007/s10021-018-0228-2.
Goyari S, Devi S, Kalita M, Talukdar N. 2014. Population, diversity and characteristics of cellulolytic microorganisms from the Indo-Burma Biodiversity hotspot. SpringerPlus 3: 700. DOI: 10.1186/2193-1801-3-700.
Gupta P, Smant K, Sahu A. 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. India: National Institute of Technology. International Journal of Microbiology. DOI: 10.1155/2012/578925.
Gusmawartati G, Agustian A, Herviyanti H, Jamsari J. 2017. Isolation of cellulolytic bacteria from peat soils as decomposer of oil palm empty fruit bunch. J Trop Soils 22 (1): 47-53. DOI: 10.5400/jts.2017.v22i1.47-53.
Halle W, Abay A. 2015. Potential of local plants as a source of n p k on small holder fields in Southern Ethiopia. United Nations University Institute for Natural Resources in Africa (UNU-INRA), Accra, Ghana (4): 78-9988-633-73-8. DOI: 10.13140/RG.2.1.3167.8886.
Hapsoh, Wawan, Dini I, Siregar A. 2017. Compatibility tests of potential cellulolytic bacteria and growth optimization in several organic materials. International Journal of Science and Applied Technology 2(2): 26-32.
Hermawan B, Suhartoyo H, Sulistyo B, Murcitro B, Herman W. 2020. Diversity of soil organic carbon and water characteristics under different vegetation types in northern Bengkulu, Indonesia. Biodiversitas, 5: 1793-1799. DOI: 10.13057/biodiv/d210504.
Holt G, NR Kreig, PHA Sneath, JT Stanley and ST Williams. 1994. Bergeys manual determinative bacteriology. Baltimore: Williamn and Wilkins Baltimore, 1124 p.
Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F. 2014. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. PLoS ONE 9:e88141. DOI: 10.1371/journal.pone.0088141.
Ibrahim S, Saputra A, Amalla S, Dewi A. 2018. Screening and identifying of cellulolytic bacteria from Alas Purwo National Park. DOI: https://doi.org/10.1063/1.5050160.
Jugran H, Tewari A. 2022. Litter decomposition of Chir-Pine (Pinus roxburghii Sarg.) in the Himalayan region. Trees, Forests and People, 8: 1-6. DOI: https://doi.org/10.1016/j.tfp.2022.100255.
Kane J, Gallagher M, Varner J, Skowronski N. 2022. Evidence of local adaptation in litter flammability of a widespread fire-adaptive pine. Journal of Ecology, 110: 1138–1148. DOI: 10.1111/1365-2745.13857.
Kasana R, Salwan R, Dhar H, Dutt S, Gulati A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol, 57: 503-507. DOI: 10.1007/s00284-008-9276-8.
Katiyar P, Srivastava V, Tyagi. 2018. Measurement of cellulolytic potential of cellulase producing bacteria. Annual Research and Review in Biology, 27(4): 1-9.
Khoirunnisa N, Anwar S, Santosa D. 2020. Isolation and selection of cellulolytic bacteria from rice straw for consortium of microbial fuel cell.J Biodiversitas 21(4): 1686-1696. DOI: 10.13057/biodiv/d210450.
Kielak A, Scheublin T, Mendes L, Veen J, Kuramae E. 2016. Bacterial community succession in pine-wood decomposition. Frontiers in Microbiology, 7: 231: 1-12. DOI: 10.3389/fmicb.2016.00231.
Krishna M, Mohan M. 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment 2 (4), 236–249. DOI: 10.1007/s40974-017-0064-9.
Kumar A, Kurup S, Snishamol S, Prabhu G. 2019. Role of cellulases in food, feed, and beverage industries. Green Bio-processes323-343. DOI: 10.1007/978-981-13-3263-0_17.
Kurniawan A, Sari S, Asriani E, Kurniawan A, Sambah A, Prihanto A. 2019. Molecular identification of cellulolytic bacteria from mangrove sediment at Tin Minning Region In West Bangka. International Journal of Applied Biology, 3(1): 2580-2410. DOI: http://journal.unhas.ac.id/index.php/ijoab.
Lee H, Fitzgerald J, Hewins D, McCulley RC, Archer SR, Rahn T, Throop HL. 2014. Soil moisture and soil litter mixing effects on surface litter decomposition: A controlled environment assessment. Soil Biol Biochem,72: 123-132. DOI: 10.1016/j.soilbio.2014.01.027.
Liu Y, Liu S, Wang J, Zhu X, Zhang Y, Liu X. 2014. Variation in soil respiration under the tree canopy in a temperate mixed forest, central China, under different soil water conditions. Ecol Res, 29: 133–142 DOI 10.1007/s11284-013-1110-5.
Murtyaningsih, Hazmi. 2017. Isolation and assay of cellulase enzyme activity on cellulolytic bacteria from waste soil. Agritrop J, 15(2): 293-308.
Nurmalinda A, Periadnadi and Nurmiati. 2013. Isolation and partial characterization of indigenous fermenting bacteria from durian fruit (Durio zibethinus Murr.). Andalas University Biology Journal, 2: 8-13.
Osman KT. 2013. Organic matter of forest soils. For Soils 63-76. DOI:10.1007/978-3-319-02541-4_4.
Shamshitov A, Decorosi F, Viti C, Fornasier F, Kadziene G, Suproniene S. 2022. Characterisation of cellulolytic bacteria isolated from agricultural soil in Central Lithuania. Sustainability, 15: 598. DOI: https://doi.org/10.3390/su15010598.
Simmons C, Claypool J, Marshall M, Jabusch L, Reddy A, Simmons B, Singer S, Stapleton J, VanderGheynst J. 2014. Characterization of bacterial communities in solarized soil amended with lignocellulosic organic matter. Aplied Soil Ecology, 73: 97-104. DOI: https://doi.org/10.1016/j.apsoil.2013.08.014.
Soares-Junior FL, Dias ACF, Fasanella CC, et al. 2013. Endo-and exoglucanase activities in bacteria from mangrove sediment. Brazil J Microbiol 44(3): 969-976. DOI: https://doi.org/10.1590/S1517-83822013000300048.
Soong J, Parton W, Calderon F, Campbell E, Cotrufo F. 2015. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124 (1-3): 27–44. DOI: 10.1007/s10533-015-0079-2.
Susilawati, Mustoyo, Budhisurya E, Anggono R, Simanjuntak B. 2013. Analysis of Soil Fertility with Soil Microorganism Indicators in Various Land Use Systems in the Dieng Plateau. Salatiga: Universitas Kristen Satya Wacana. Jurnal AGRIC 25(1): 64-72. DOI: https://doi.org/10.24246/agric.2013.v25.i1.p64-72.
Prayogo C, Prastyaji D, Prasetya B, Arfarita N. 2021. Structure and composition of major arbuscular mycorrhiza (am) under different
farmer management of coffee and pine agroforestry system. Agrivita Journal Of Agricultural Science 43(1): 146-163. DOI: 10.17503/agrivita.v1i1.2639.
Rahmadaniarti A. and Mofu W. 2020. Chemical coumpounds and decomposition process from four species leaf litter as a source of organic matter soil in Anggori Education Forest, Manokwari. Journal of Sylva Indonesiana (JSI) 3(2): 60 – 67. DOI: 10.32734/jsi.v3i02.2848.
Rahman M, Tsukamoto J, Rahman M, Yoneyama A, Mostafa K. 2013. Lignin and its effect on litter decompositionin forest ecosystems. Chemistry and Ecology, 1-13. DOI: 10.1080/02757540.2013.790380.
Ramos HMN, Vasconcelos SS, Kato OR, Castellani DC. 2018. Above and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agrofor Syst, 92 (2): 221-237. DOI: 10.1007/s10457-017-0131-4.
Rinady M, Prayogo C, Nuraini Y, Arfarita N. 2023. The effect of landmanagement and organic matter inputs on bacterial population and soil nutrientsacross different types of agroforestry system. Biodiversitas, 24(3):1333-1345. DOI: 10.13057/biodiv/d240302.
Sari A, Panjali L, Purwanto, Hartati S, Supriyadi. 2020. Effectiveness of nitrification inhibition through addition of local litter to corn plants in Andisols. Modern Applied Science, 14(7): 120-132. DOI: https://doi.org/10.5539/mas.v14n7p120.
Schoenborn A,Yannarell S, MacVicar C, Medina N, Markillie M, Mitchell H, Bonham K, Leon-Reyes A, Riveros-Iregui D, Klepac-Ceraj V, Shank E. 2022. Microclimate is a strong predictor of the native and invasive plant-associated soil microbiota on San Cristóbal Island, Galápagos archipelago. Environmental Microbiology, 1-41. DOI: 10.1111/1462-2920.16361.
Thatoi H, Behera BC, Mishra RR, Dutta SK. 2013. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63:1-19. DOI: 10.1007/s13213-012-0442-7.
Top E, Wilson D. 2011. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14: 1-5.
Tsufac A, Yerima B, Awazi N. 2019. Assessing the role of agroforestry in soil fertility improvement in Mbelenka-Lebialem, Southwest Cameroon. International Journal of Global Sustainability, 3(1): 1937-7924. DOI: 10.5296/ijgs.v3i1.15729.
Van Straaten O, Corre MD, Wolf K, M Tchienkoua, Cuellar E, Matthews RB, Veldkamp E. 2015. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc Nat Acad Sci 12: 9956-9960. DOI: https://doi.org/10.1073/pnas.1504628112.
Yuan Y, Wang G, Han C, Zhang G. 2015. Effects of microclimate on soil bacterial communities across two contrasting timberline ecotones in southeast Tibet. European Journal of Soil Science, 66: 1033–1043. DOI: 10.1111/ejss.12292.
Zeng Q, Liu Y, An S. 2017. Impact of litter quantity on the soil bacteria community during the decomposition of quercus wutaishanica litter. Life and Environment Research, 5: e3777. DOI: 10.7717/peerj.3777.
Zhou Y, Clark M, Su J, Xiao C. 2015. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil, 386 (1-2): 171–183. DOI: 10.1007/s11104-014-2254-y.

Most read articles by the same author(s)