Local ecological knowledge of coffee agroforestry farmers on earthworms and their relation to soil quality in East Java (Indonesia)




Abstract. Mardiani MO, Kusumawati IA, Purnamasari E, Prayogo C, van Noordwijk V, Hairiah K. 2022. Local ecological knowledge of coffee agroforestry farmers on earthworms and their relation to soil quality in East Java (Indonesia). Biodiversitas 23: 3344-3354. Farmers manage their land-based on their understanding of biotic and abiotic factors, including soils, and how these factors affect crop growth and productivity. Their local ecological knowledge (LEK) is built upon intergenerational transfer and can use concepts that don’t directly match those of current science-based ecological knowledge. We explored farmer LEK related to soil organic matter management and earthworms in coffee-based agroforestry systems on volcanic slopes in East Java (Indonesia) by in-depth interviews with key informants and by surveying the concurrence of respondents, stratified by gender and age, with resulting statements. The term used in the local language for earthworms (‘cacing tanah’) included a range of species. According to 22% (n=48) of farmers, small earthworms (probably Pontoscolex corethrurus) are harmful to coffee trees because they eat the roots. Also, 54% (n=48) of farmers thought earthworms that eat soil cause a decrease in soil volume. However, according to the farmers, large earthworms (reddish-brown) can fertilize the soil by leaving their casts on the soil surface. Such worms are often found in coffee agroforestry systems. Farmers have little explicit knowledge of the activities of earthworms and their relation with litter as a source of food. Farmer knowledge of ecosystem services provided by earthworms can enrich current scientific literature and trigger a two-way dialogue.


Anderson, J.M., Flanagan, P.W., Caswell, E., Coleman, D.C., Cuevas, E., Freckman, D.W., Jones, J.A., Lavelle, P., Vitousek, P. 1989. Biological processes regulating organic matter dynamics in tropical soils. In Coleman, D.C., Oades, J.M. and Uehara, G. (eds) Dynamics of Soil Organic Matter in Tropical Ecosystems. Honolulu, Hawaii, USA: University of Hawaii Press.
Ato’ilah, I. 2017. Soil Quality in Coffee Agroforestry after Mount Kelud Erupsion: Local Ecological Knowledge. [Thesis]. Bwaijaya University, Malang. [Indonesian]
Ballard, H.L., Fernandez-Gimenez., M.E., Sturtevant., V.E. 2007. Integration of Local Ecological Knowledge and Conventional Science: a Study of Seven Community-Based Forestry Organizations in the USA. Ecology and Society. 2: 27
Barois, I., Lavelle, P., Brossard, M., Tondoh, J., Martinez, M., Rossi, J. P., Senapati, B. K., Angeles, A., Fragoso, C., Jimenez, J. J., Decaens, T., Lattaud, C., Kanyonyo, J., Blanchart, E., Chapuis, L., Brown, G.G., Moreno, A. 1999. Ecology of Earthworm Species with Large Environmental Tolerance and/or Extended Distribution. Earthworm Management in Tropical Agroecosystems, 3: 57 – 84.
Barrera-Bassols, N., dan Zinck, J. A. 2003. Ethnopedology: A Worldwide View on The Soil Knowledge of Lokal People. Geoderma, 111, 171–195
Barrios, E., 2007. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64: 269–285.
Bicalho, Ana Maria de Souza Mello., Peixoto, Richardo Trippia dos G. 2016. Farmer and scientific knowledge of soil quality: A social ecological soil systems approach. Belgeo. Sustainability of rural systems balancing heritage and innovation. 4
Birmingham, D. M. 2003. Local knowledge of soils: the case of contrast in Cote d’lvoire. Geoderma. 111: 481-501.
Blakemore, R.J., 2009. Cosmopolitan earthworms–a global and historical perspective. In: Shain D.H. (Ed.) Annelids as model systems in the biological sciences. John Wiley & Sons, New York. 57-283.
Brown, G.G., Pashanasi, B., Villenave, C., Patron, J.C., Senapati, B.K., Giri, S., Barois, I., Lavelle, P., Blanchart, E., Blakemore, R.J., Spain, A.V., Boyer, J.1999. Effects of earthworms on plant production in the tropics. In: Lavelle, P., Brussaard, L., Hendrix, P. (eds) The Management Of Earthworms In Tropical Agroecosystems. CAB International, Wallingford. 87–148.
Budijastuti, W. 2019. Type of earthworm in the banana tree habitat. Journal of Physics: Conference Series 1277(1), p. 012029.
Bünemann, E.K., Bongiorno, G., Bai, Z.G., de Goede, R., Mäder, P., Sukkel, W., Brussaard, L., 2018. Soil quality – a review. Soil Biol. Biochem. 120: 105–125.
de Souza Mello Bicalho, A.M.,Trippia dos Guimarães Peixoto, R. 2016. Farmer and scientific knowledge of soil quality: a social ecological soil systems approach. Belgian Journal of Geography 2016, p4. https://doi.org/10.4000/belgeo.20069
Edwards, C.A., Bohlen, P.J. (1996) Biology and Ecology of Earthworms. 3rd Edition, Chapman & Hall, London
Edwards, W.M., Shipitalo, M.J., Owens, L.B., Norton, L.D. 2010. Effect of Lumbricus terrestris L. burrows on hydrology of continuous no-till corn fields. Geoderma 46: 73–84
Fragoso, C., Brown, G. G., Patrón, J. C., Blanchart, E., Lavelle, P., Pashanasi, B., ... & Kumar, T. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Applied soil ecology, 6: 17-35.
González, G. Huang, C.Y. Zou, X. Rodriguez, C. 2006. Earthworm invasions in the tropics. Bio Invasions. http://dataonline.bmkg.go.id/
Hairiah, K., Sulistyani, H., Suprayogo, D., Purnomosidhi, P., Widodo, R. H., & Van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest ecology and management, 224: 45-57.
Helliwell, J. , Miller, A. , Whalley, W. , Mooney, S. , & Sturrock, C. (2014). Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biology and Biochemistry, 74: 138–147. 10.1016/j.soilbio.2014.03.009
Joshi, L., Suyanto, S., Catacutan , D., and Noordwijk. 2001. Recognising local knowledge and giving farmers a voice in the policy development debate. International Centre for Research in Agroforestri Southeast Asian Regional Research Programme.
Kasurinen, A., Peltonen, P.A., Julkunen-Tiitto, R., Vapaavuori, E., Nuutinen, V., Holopainen, T., Holopainen, J.K., 2007. Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant Soil, 292: 25-43.
Kooch, Y., Mehr, M.A., Hosseini, S.M. 2021. Soil biota and fertility along a gradient of forest degradation in a temperate ecosystem. Catena 204: 105428.
Larsbo, M., Jarvis, N.J. 2003. MACRO5.0. A Model of Water Flow and Solute Transport in Macroporous Soil. Technical description. Emergo 2003:6, Studies in the Biogeophysical Environment, SLU. Department of Soil Science, Uppsala
Lickacz J, Penny D. 2001. Soil organic matter: Agriculture and Rural Development. Government of Alberta, Plant Industry Division, Alberta.
Marichal, R., Martinez, A.F., Praxedes, C., Ruiz, D., Carvajal, A.F., Oszwald, J., del Pilar Hurtado, M., Brown, G.G., Grimaldi, M., Desjardins, T., Sarrazin, M., 2010. Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology, 46: 443-449.
Marinho , M., Michender, W., Pereira, Vazquez, E., Lado, M., and Paz Gonzalez, A. 2017. Depth distribution of soil organic carbon in an oxisol under different land uses : stratification indices and multifractal analysis. Geoderma, 287: 126-134.
Nguemezi., C., Tematio, P., Yemefack, M., Tsozue, D., Silatsa, T.B.F. 2020. Soil quality and soil fertility status in major soil groups at the Tombel area, South-West Cameroon. Heliyon.
Nguyen, M.P., Vaast, P., Pagella, T., Sinclair, F., 2020. Local knowledge about ecosystem services provided by trees in coffee agroforestry practices in northwest Vietnam. Land, 9: 486
Nouri-Aiin, M., Görres, J.H., 2019. Earthworm cocoons: the cryptic side of invasive earthworm populations. Appl. Soil Ecol. 141, 54–60.
Ortíz-Ceballos, A.I., Ortiz-Gamino, D., Andrade-Torres, A., Pérez-Rodríguez, P., López-Ortega, M., 2019. Pontoscolex corethrurus: A homeless invasive tropical earthworm? PloS one, 14(9): 0222337.
Parmelee, R.W., M.H. Beare, W. Cheng, P.F. Hendrix, S.J. Rider, D.A. Crossley Jr, D.C. Coleman. 1990. Earthworm and enchytraeids in conventional and no-tillage agroecosystems: A biocide approach to assess their role in organic matter breakdown. Biol. Fertil. Soils 10: 1–10
Palungkun, Rony. 2006. Sukses Beternak Cacing Tanah Lumbricus rubellus. Penebar Swadaya, Jakarta. [Indonesian]
Prayogo C, Kusumawati IA, Qurana Z, Kurniawan S, Arfarita N. 2021. Does different management and organic inputs in agroforestry system impact the changes on soil respiration and microbial biomass carbon? IOP Conf Ser: Earth Environ Sci 743(1): 012005
Purnamasari, E., Kusumawati, I.A, Mardiani, M.O., Pratiwi, DK., Hairiah, K. 2022. The management of coffee shade tree canopy in agroforestry systems: Comparing coffee farmers' ecological knowledge with modern ecological knowledge. Pros Sem Nas Masy. Biodiv Indonesia. 8 (1) 1-8
Putri, A. E. 2018. The Diversity and Density of Earthworm as an Indicator of Soil Health In Agroforestry System. (Case Study KHDTK-UB Karang Ploso, Malang Regency. [Thesis]. Bwaijaya University, Malang. [Indonesian]
Rahma, M. J. 2019. Local Ecological Knowledge About Land Management : Soil Quality and Farmers Income In Coffee Agroforestry. [Thesis]. Bwaijaya University, Malang. [Indonesian]
Rajkhowa, D.J., Bhattacharyya, P.N., Sarma, A.K., Mahanta, K., 2015. Diversity and distribution of earthworms in different soil habitats of Assam, north-east India, an Indo-Burma biodiversity hotspot. Proceedings of the national academy of sciences, India section B: biological sciences, 85: 389-396.
Reynolds, J.W. 2001. The earthworms of New Brunswick (Oligochaeta: Lumbricidae). Megadrilogica 8(8): 37-47
Römbke J., Jänsch, S., Garcia, M. 2007. Earthworms as bioindicators (in particular for the influence of land use). In: G.G. Brown and C. Fragoso (Eds). Minhocas na América Latina: biodiversidade e ecologia. Embrapa Soja. Londrina.
Rowe, R.L., Prayogo, C., Oakley, S. , Hairiah, K., van Noordwijk, M., Wicaksono, K.P., Kurniawan, S., Fitch, A. , Cahyono, E.D., Suprayogo, D., McNamara, N.P. 2022. Improved Coffee Management by Farmers in State Forest Plantations in Indonesia: An Experimental Platform. Land 11: 671. https://doi.org/10.3390/land11050671.
Saito, K., Linquist, B., Keobualapha, B., Shiwara, T., Hoire, T. 2006. Farmers' knowledge of soils in relation to cropping practices: A case study of farmers in upland rice based slash-and-burn systems of northern Laos. Geoderma. 136: 64-74
Saputra, D.D., Sari, R.R., Hairiah, K., Widianto, W., Suprayogo, D., van Noordwijk, M. 2022. Recovery after volcanic ash deposition: vegetation effect on soil organic carbon, soil structure and infiltration rates. Plant Soil https://doi.org/10.1007/s11104-022-05322-7.
Sari, R.R., Rozendaal, D., Saputra, D.D., Hairiah, K., Roshetko, J.M., van Noordwijk, M., 2022. Balancing litterfall and decomposition in cacao agroforestry systems. Plant Soil, 473: 251–271. https://doi.org/10.1007/s11104-021-05279-z
Schelfhout, S., Mertens, J., Verheyen, K., Vesterdal, L., Baeten, L., Muys, B., De Schrijver, A. 2017. Correction: Schelfhout, S.; et al. Tree species identity shapes earthworm communities. Forests 8: 85
Schroeder, D. 1984. Soils: Facts and Concepts. International Potash Institute Bern.
Smith Dumont, E., Gassner, A., Agaba, G., Nansamba, R., Sinclair, F. 2019. The utility of farmer ranking of tree attributes for selecting companion trees in coffee production systems. Agroforestry Systems, 93: 1469-1483.
Sofo, A., Mininni, A.N., Ricciuti, P. 2020. Soil macrofauna: a key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10, 456. https://doi.org/10.3390/agronomy10040456
Sofo, A.; Mininni, A.N.; Ricciuti, P. 2020. Soil Macrofauna: A key Factor for Increasing Soil Fertility and Promoting Sustainable Soil Use in Fruit Orchard Agrosystems. Agronomy. 10: 456. https://doi.org/10.3390/agronomy10040456
Taheri, S., Pelosi, C., Dupont, L., 2018. Harmful or useful? A case study of the exotic peregrine earthworm morphospecies Pontoscolex corethrurus. Soil Biology and Biochemistry. 116: 277-289.
Tapia-Coral, S. C., F. J. Luizão, E. Barros, B. Pashanasi and D. Del Castillo (2006) Effect of Pontoscolex corethrurus Muller, 1857 (Oligochaeta: Glossoscolecidae) Inoculation on litter weight loss and soil nitrogen in mesocosms in the Peruvian Amazon. Caribbean Journal of Science 42: 410-418.
Van Groenigen, J.W., Lubbers, I.M., Vos, H.M.J., Brown, G.G., De Deyn, G.B., van Groenigen, K.J. 2014. Earthworms increase plant production: a meta-analysis. Scientific Reports 4: 6365
Van Groenigen, J.W., Van Groenigen, K.J., Koopmans, G.F., Stokkermans, L., Vos, H.M., Lubbers, I.M., 2019. How fertile are earthworm casts? A meta-analysis. Geoderma, 338: 525-535.
Yatso K.N., Lilleskov E.A., 2015. Effect of tree leaf litter, deer fecal pellets, and soil properties on growth of an introduced earthworm (Lumbricus terrestris): Implications for invasion dynamics. Soil Biology & Biochemistry 94: 181-190
Zachmann, J.E. Linden, D.R., Clapp, C.E. 1987. Macroporous infiltration and redistribution as affected by earthworms, tillage, and residue. Soil Sci. Soc. Am. J. 51: 1580-1586

Most read articles by the same author(s)