Exploration of cadmium-resistant bacteria in cadmium-contaminated rice fields in Karawang District, Indonesia

##plugins.themes.bootstrap3.article.main##

NOVRIANTY RIZQI AZIS
YULIA NURAINI
CAHYO PRAYOGO
RIZKY MAULANA ISHAQ
NOIRUNGSEE NUTTAPOL

Abstract

Abstract. Azis NR, Nuraini Y, Prayogo C, Ishaq RM, Nuttapol N. 2024. Exploration of cadmium-resistant bacteria in cadmium-contaminated rice fields in Karawang District, Indonesia. Biodiversitas 25: 3637-3644. Cadmium is a heavy metal naturally present in the soil, but its presence can increase due to human activities (anthropogenic). Increased cadmium content in soil due to human activities can occur due to agricultural activities, such as the continuous use of chemical fertilizers and pesticides. These chemical products contain harmful heavy metals such as cadmium, which results in soil pollution due to the accumulation of these metals in the soil and the entry of these metals into agricultural products, thus affecting health. The problem can be solved by soil bioremediation that utilizes indigenous bacteria. This study aims to explore cadmium-resistant bacteria with high resistance levels that can be used for the bioremediation of cadmium-contaminated soil. Cadmium-resistant bacteria were explored from 4 locations in Karawang District, Indonesia, with soil cadmium content >0.5 ppm, namely 2 locations in Telukjambe Village, 1 in Purwajaya Village, and 1 in Lemahmukti. 14 cadmium-resistant bacterial isolates with different characteristics were obtained from these 4 locations. Microbiological tests conducted include Gram staining test, resistance test, pathogenicity test, and bacterial DNA test. Seven bacterial isolates were found to be non-pathogenic to humans and plants. The best three bacterial isolates from 7 non-pathogenic isolates with resistance ability 50-500 ppm can potentially be used as a bioremediation of cadmium-contaminated soil. The three isolates are isolates B1, B6, and B12. DNA test results stated that isolate B1 is Shewanella decolorationis strain NSSD01, B6 is Chryseobacterium cucumeris strain E1-3, and B12 is Aeromonas hydrophila strain GX5.

##plugins.themes.bootstrap3.article.details##

References
Alengebawi A, Abdelkhalek ST, Qureshi SR, Wang MQ. 2021. Heavy metals and pesticides toxicity in agriculture soil and plants: Ecological risks and human health implication. Toxics 9 (3): 42. DOI: 10.3390/tocixs9030042.
Amaria W, Sinaga MS, Mutaqin KH, Supriadi, Widodo. 2023. Hemolysis and hypersensitive test culture collection management of antagonistic bacteria. J Trop Plant Pests Dis 23 (2): 24-30. DOI: 10.23960/j.hptt.12324-30.
Arwin M, Ijong FG, Tumbol R. 2016. Characteristics of Aeromonas hydrophila isolated from tilapia (Oreochromis niloticus). Aquat Sci Manag 4 (2): 52. DOI: 10.35800/jasm.4.2.2016.14450.
Awan F, Dong Y, Wang N, Liu J, Ma K, Liu Y. 2018. The fight for invincibility: Environmental stress response mechanisms and Aeromonas hydrophila. J Microb Pathogen 116 (2018): 135-145. DOI: 10.1016/j.micpath.2018.01.023.
Azizah M, Maslahat M. 2021. Kandungan logam berat timbal (Pb), kadmium (Cd), dan merkuri (Hg) di dalam tubuh ikan wader (Barbodes binotatus) dan air Sungai Cikaniki, Kabupaten Bogor. Limnotek: Perairan Darat Tropis di Indonesia 28 (2): 83-93. DOI: 10.14203/limnotek.v28i2.331. [Indonesian]
Bafandeh N, Rahimian H, Jouzani GS, Alidadi A. Characterization of the bacteria associated with alder angular leaf spot in Iran. Aust Plant Pathol 48: 573-581. DOI: 10.1007/s13313-019-00658-8.
Bravo D, Braissant O. 2022. Cadmium-tolerant bacteria: Current trends and applications in agriculture. Lett Appl Microbiol 74: 311-333. DOI: 10.1111/lam.13594.
Dewi T, Martono E, Hanudin E, Harini R. 2022. Impact of agrochemicals application on lead and cadmium concentrations in shallot fields and their remediation with biochar, compost, and botanical pesticides. IOP Conf Ser: Earth Environ Sci 1109: 012050. DOI: 10.1088/1755-1315/1109/1/012050.
Eviati S, Herawaty L, Aggria L, Usman HE, Tantika, Prihatini R, Wuningrum P. 2023. Petunjuk Teknis Edisi 3: Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Penjujian Standar Instrumen Tanah dan Pupuk, Bogor. [Indonesian]
Fahruddin F, Kasim S, Rahayu EU. 2020. Cadmium (Cd) resistance of isolate bacteria from Poboya Gold Mining in Palu, Central Sulawesi. Jurnal Biologi Tropis 20 (2): 298-304. DOI: 10.29303/jbt.v20i2.2013.
Gao Y, Duan Z, Zhang L, Sun D, Li X. The status and research progress of cadmium pollution in rice- (Oryza sativa L.) and wheat (Triticum aestivum L.) cropping systems in China: A critical review. Toxics 10: 794. DOI: 10.3390/ toxics10120794.
Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. 1994. Bergey's Manual of Determinative Bacteriology 9th ed. Lippincott Williams & Wilkins, Philadelphia, PA, USA.
Huang F, Gou CL, Lu GN, Yi XY, Zhu LD, Zhou D. 2014. Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere 109: 134-142. DOI: 10.1016/j.chemosphere.2014.01.066.
Jeong JJ, Lee DW, Park B, Sang MK, Choi IG, Kim KD. 2017. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. Intl J Syst Evol Microbiol 67 (3): 610-616. DOI: 10.1099/ijsem.0.001670.
Jung H, Lee D, Lee S, Kong HJ, Park J, Seo YS. 2023. Comparative genomic analysis of Chryseobacterium species: Deep insights into plant-growth-promoting and halotolerant capacities. Microb Genom 9 (10): 001108. DOI: 10.1099/mgen.0.001108.
Kubier A, Wilkin RT, Pichler T. 2019. Cadmium in soil and groundwater: A review. Environ Protect Agency 108: 1-16. DOI: 10.1016/j.apgeochem.2019.104388.
Lemaire ON, Honore FA, Tempel S, Fortier EM, Leimkuhler S, Mejean V, lobbi-Nivol C. 2019. Shewanella decolorationis LDS1 chomate resistance. J Appl Environ Microbiol 85: 7-19. DOI: 10.1128/AEM.00777-19.
Li Z, Liang Y, Hu HSM, Shaheen, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J, Zhao J. 2021. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environ Intl 156 : 106749. DOI: 10.1016/j.envint.2021.106749.
Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, Li X, He X, Fang Y. 2017. Spatial distribution and source identification of heavy metals in surface soils in a typical coal Mine City, Lianyuan, China. Environ Pollut 225: 681-690. DOI: 10.1016/j.envpol.2017.03.057.
Ministry of State for Population and Environment Republic of Indonesia and Dalhousie University of Canada. 1992. Environmental management in indonesia. Report on Soil Quality Standards for Indonesia (Interim Report).
Mgbodile CF, Otutu U, Onuoha S, Eze U, Ugwuoji T, Nnabuife O, Nwagu TNT. 2022. Hydrolases secreting, heavy metal-resistant halophilic bacteria isolated from metal dumpsites. Asian J Trop Biotechnol 19: 11-19. DOI: 10.13057/biotek/c190103.
Mogrovejo DC, Perini L, Gostin?ar C, Sep?i? K, Turk M, Ambroži?-Avguštin J, Brill FHH, Gunde CN. 2020. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable arctic bacteria. Microbiol 11: 570. DOI: 10.3389/fmicb.2020.00570.
Mutaqin BK, Tanuwira UH, Hernawan E, Safitri R. Isolation and identification of bacteria from banana stem biopocess result as direct fed microbial for ruminant. Sci Paper-Animal Scien Series: Lucr?ri ?tiin?ifice - Seria Zootehnie 67: 98-103.
Onokebhagbe VO, Adeleye AO, Nkereuwem ME. 2019. Bioavailability of cadmium in soil, fertilizer sources and uptake by leafy vegetables: A review. FUDMA J Sci 3 (1): 299-306.
Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, Karaman C, Orooji Y, Show PL. 2022. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287: 132369. DOI: 10.1016/j.chemosphere.2021.132369
Rinawati D, Sofiatun. 2018. Kandungan logam berat dan pestisida pada sayuran segar di Tangerang. Jurnal Higiene 4 (3): 169-176. DOI: 10.24252/higiene.v4i3.6254. [Indonesian]
Sarker A, Nandi R, Kim JE, Islam T. 2021. Remediation of chemical pesticides from contaminated sites through potential microorganisms and their functional enzymes: Prospects and Challenges. Environ Technol Innov 23: 101777. DOI: 10.1016/j.eti.2021.101777.
Tasripin DS, Yuniarti E, Mutaqin BK. Isolation of indigenous microorganism from the liquid produced by the bioprocess of corn straw as direct fed microbials. Biodiversitas 23: 3452-3456. DOI: 10.13057/biodiv/d230718.
Wang Y, Cai X, Mao Y. 2021. The fist complate genome sequence of species Shewanella decoloration, from a bioremediation Cimpetent Strain Ni1-3. J. G3: Gen Genom Genet 11 (10): 1-19. DOI: 10.1093/g3journal/jkab261
Xia X, Wu S, Zhou Z, Wang G. 2021. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. J Hazard Mat 401: 123685. DOI: 10.1016/j.jhazmat.2020.123685.
Yang M, Zhao X, Zheng S, Liu X, Jin B, Li H, Gan Y. 2017. A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb2O5 Nanotube Arrays. J Elect Chem 791: 17- 22. DOI: 10.1016/j.jelechem.2017.03.009.
Zhang H, Yuan X, Xiong T, Wang H, Jiang L. 2020. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem Eng J 398: 125657. DOI: 10.1016/j.cej.2020.125657.

Most read articles by the same author(s)