Biofilm formation by mercury resistant bacteria from polluted soil small-scale gold mining waste




Abstract. Nurfitriani S, Arisoesilaningsih E, Nuraini Y, Handayanto E. 2021. Biofilm formation by mercury resistant bacteria from polluted soil small-scale gold mining waste. Biodiversitas 23: 992-999. Small-scale gold mining has a major impact on living things and the environment due to mercury contamination. Bacteria are known to have a defense mechanism in mercury-contaminated soil. The biofilm produced by bacteria helps them survive and protect them from environmental stresses. This study aimed to find mercury-resistant bacteria capable of forming biofilms from mercury-contaminated soil in small-scale gold mining. Samples for bacterial isolation were mercury-contaminated soil from three gold processing sites in Lombok, Indonesia. The obtained mercury-resistant bacteria were tested to form biofilms on the media according to the test dose. The bacterial biofilms formed were observed, and each biofilm's adsorption capacity was measured. The three bacteria with highest adsorption values were identified molecularly using 16S rDNA. The results showed that most mercury-resistant bacteria were able to form biofilms at a dose of 25 ppm. However, only four bacteria were able to produce biofilms at a dose of 50 ppm. Biofilms of three bacteria had the highest adsorption values, ranging between 2.78-3.5. The three bacteria were identified as Bacillus toyonensis (JGT-F1), Burkholderia cepacia (PJT-K), and Microbacterium chocolatum (PJT-D). This study indicates that biofilm-producing bacteria are one of the remediation agents and can be used in mercury bioremediation.


Adhami E, Aghaei S, Zolfaghari MR. 2017. Evaluation of heavy metals resistance in biofilm cells of native Rhodococcus spp. isolated from soil. Archives of Hygiene Sciences 6(3):235–243. doi: 10.29252/archhygsci.6.3.235.
Agamennone V. Agamennone V, van Straalen J, Brouwer A, de Boer TE, Hensbergen PJ, Zaagman N, Braster M,.van Straalen NM, Roelofs D, Janssens TKS. 2019. Genome annotation and antimicrobial properties of Bacillus toyonensis VU-DES13, isolated from the Folsomia candida gut. Entomologia Experimentalis et Applicata 167(3): 269–285. doi: 10.1111/eea.12763.
Ayangbenro AS, Babalola OO. 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health 14(1): 1-16. doi: 10.3390/ijerph14010094.
Chasanah U, Nuraini Y, Handayanto E. 2018. The potential of mercury-resistant bacteria isolated from small-scale gold mine tailings for accumulation of mercury. Journal of Ecological Engineering 19(2): 236–245. doi: 10.12911/22998993/83565.
Chien CC, Lin BC, Wu CH. 2013. Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp. Biochemical Engineering Journal 78:132–137. doi: 10.1016/j.bej.2013.01.014.
Consumi M, Jankowska K, Leone G, Rossi C, Pardini A, Robles E, Wright K, Brooker A, Magnani A. 2020. Non-destructive monitoring of P. fluorescens and S. epidermidis biofilm under different media by fourier transform infrared spectroscopy and other corroborative techniques. Coatings 10(930): 1–15.
Dadrasnia A, Wei KSC, Shahsavari N, Azirun MS, Ismail S. 2015. Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. International Journal of Environmental Research and Public Health 12(12):15321–15338. doi: 10.3390/ijerph121214985.
Davey ME, O’toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews 64(4): 847–867. doi: 10.1128/mmbr.64.4.847-867.2000.
Dliyauddin M, Ardyati T, Suharjono. 2020. Evaluation of enzymatic activity and identification of potent proteolytic and chitinolytic bacteria isolated from crab shell waste. Biodiversitas 21(1): 211-218
e Silva AdE, de Carvalho MAR, de Souza SAL, Dias PMT, Filho RGdS, de Meirelles Saramago CS, de Melo Bento CA, Hofer E. 2012. Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology 43(4): 1620–1631. doi: 10.1590/S1517-83822012000400047.
Ekyastuti W, Astiani D, Roslinda E. 2016. Prospect of indigenous plant species for revegetation in the tailings area of ex community gold mine. Biodiversitas 17(2): 764-768
Ekyastuti W, Setyawati TR. 2015. Identification and in vitro effectivenesstest of four isolates of mercury-resistant bacteriaas bioaccumulation agents of mercury. Procedia Environmental Sciences 28: 258–264. doi: 10.1016/j.proenv.2015.07.033.
Erguven GO, Koçak E. 2019. Determining the detoxification potential of some soil bacteria and plants on bioremediation of deltamethrin. Eurasian Journal of Agricultural Research 3(1): 36–47.
Esdaile LJ, Chalker JM. 2018. The mercury problem in artisanal and small-scale gold mining. Chemistry-A European Journal 24(27): 6905–6916. doi: 10.1002/chem.201704840.
Fabietti G, Biasioli M, Barberis R, Ajmone-Marsan F. 2010. Soil contamination by organic and inorganic pollutants at the regional scale: The case of piedmont, Italy. Journal of Soils and Sediments 10(2): 290–300. doi: 10.1007/s11368-009-0114-9.
Garrett TR, Bhakoo M, Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science 18(9): 1049–1056. doi: 10.1016/j.pnsc.2008.04.001.
Hagan N, Robins N, Hsu-Kim H, Halabi S, Gonzales RDE, Ecos E, Richter D, Vandenberg J. 2015. Mercury hair levels and factors that influence exposure for residents of Huancavelica, Peru. Environmental Geochemistry and Health 37(3): 507–514. doi: 10.1007/s10653-014-9665-9.
Hindersah R, Risamasu R, Kalay AM, Dewi T, Makatita I. 2018. Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku. Journal of Degraded and Mining Lands Management 5(2): 1027–1034. doi: 10.15243/jdmlm.2018.052.1027.
Ianeva OD. 20018. Mechanisms of bacteria resistance to heavy metals. Mikrobiolohichny? zhurnal 71(6): 54–65.
Irawati W, Patricia, Soraya Y, Baskoro AH. 2012. A Study on mercury-resistant bacteria isolated from a gold mine in Pongkor Village, Bogor, IndonesiA. HAYATI Journal of Biosciences 19(4): 197–200. doi: 10.4308/hjb.19.4.197.
Koczan JM, Lenneman BR, McGrath MJ, Sundin GW. 2011. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora. Applied and Environmental Microbiology 77(19) 7031–7039. doi: 10.1128/AEM.05138-11.
Koczan JM, McGrath MJ, Zhao Y, Sundin GW. 2009. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: Implications in pathogenicity. Phytopathology 99(11): 1237–1244. doi: 10.1094/PHYTO-99-11-1237.
Koechler S, Farasin J, Cleiss-Arnold J, Arsene-Ploetze F. 2015. Toxic metal resistance in biofilms: Diversity of microbial responses and their evolution. Research in Microbiology 166(10): 764–773. doi: 10.1016/j.resmic.2015.03.008.
Murphy MP, Caraher E. 2015. Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells. Pathogens and Disease 73(8): 1-13. doi: 10.1093/femspd/ftv069.
Mustapha MU, Halimoon N. 2015. Screening and isolation of heavy metal tolerant bacteria in industrial effluent. Procedia Environmental Sciences 30: 33–37. doi: 10.1016/j.proenv.2015.10.006.
Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, guez-Cerrato VR, Ponte MC, Soriano F. 2008. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. Journal of Applied Microbiology 105(2): 585–590. doi: 10.1111/j.1365-2672.2008.03791.x.
Nocelli N, Bogino PC, Banchio E, Giordano W. 2016. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9(6): 1-19. doi: 10.3390/ma9060418.
Nurfitriani S, Arisoesilaningsih E, Nuraini Y, Handayanto E. 2020. Bioaccumulation of mercury by bacteria isolated from small scale gold mining tailings in Lombok, Indonesia. Journal of Ecological Engineering 21(6): 127–136. doi: 10.12911/22998993/123247.
Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. 2015. Bacillus toyonensis strain AEMREG6, a bacterium isolated from South African marine environment sediment samples produces a glycoprotein bioflocculant. Molecules 20(3): 5239–5259. doi: 10.3390/molecules20035239.
Prabhakaran P, Ashraf MA, Aqma WS. 2016. Microbial stress response to heavy metals in the environment. RSC Advances 6(111): 109862–109877. doi: 10.1039/c6ra10966g.
Prihanto AA. 2011. Penggunaan software Image-J untuk penghitungan dan visualisasi 3D tutupan biofilm Vibrio Cholerae El Tor pada Kondisi Tumbuh Berbeda. Rekayasa 4(2): 113–118.
Sanjay MS, Sudarsanam D, Raj GA, Baskar K. 2020. Isolation and identification of chromium reducing bacteria from tannery effluent. Journal of King Saud University-Science 32(1):265–271. doi: 10.1016/j.jksus.2018.05.001.
Teitzel GM, Parsek MR. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology 69(4): 2313–2320. doi: 10.1128/AEM.69.4.2313-2320.2003.
Van Acker H, Andrea S, Bazzini S, De Roy K, Udine C, Messiaen T, Riccardi G, Boon N, Nelis HJ, Mahenthiralingam E, Coenye T. 2013. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. Plos One 8(3): 1–12. doi: 10.1371/journal.pone.0058943.
Wagner-Dobler I, Lunsdorf H, Lubbehusen T, Von Canstein HF, Li Y. 2000. Structure and species composition of mercury-reducing biofilms. Applied and Environmental Microbiology 66(10): 4559–4563. doi: 10.1128/AEM.66.10.4559-4563.2000

Most read articles by the same author(s)

1 2 > >>