Impact of genotype and harvest age on the polyphenol content and antioxidant capacity of okra (Abelmoschus esculentus) in Indonesia

##plugins.themes.bootstrap3.article.main##

NOVIAN LIWANDA
MUHAMAD SYUKUR
WARAS NURCHOLIS

Abstract

Abstract. Liwanda N, Syukur M, Nurcholis W. 2024. Impact of genotype and harvest age on the polyphenol content and antioxidant capacity of okra (Abelmoschus esculentus) in Indonesia. Biodiversitas 25: 4920-4929. Consuming bioactive compounds like polyphenols and flavonoids is crucial for reducing the risk of diseases due to their antioxidant, antibacterial, and anticancer properties. Okra (Abelmoschus esculentus), a widely cultivated vegetable known for its nutritional benefits, remains underutilized in Indonesia. This study aimed to identify the optimal genotype and harvest age of okra to maximize total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity. Ten okra genotypes were evaluated, with a focus on the impact of harvest age on four selected genotypes. The G7 genotype (F7 Clemson × Stripe-3-10-15B) exhibited the highest TPC (0.98 mg gallic acid equivalent/g fresh weight), TFC (0.35 mg quercetin equivalent/g fresh weight), and antioxidant capacity (5.13 µmol Trolox equivalent/g fresh weight). The optimal harvest age was determined to be the 7th day after anthesis, yielding the highest TPC and TFC values, ranging from 0.31 to 0.98 mg GAE/g and 0.19 to 0.35 mg QE/g, respectively. These findings indicate that both genotype and harvest age significantly affect the polyphenol content and antioxidant capacity of okra, with the G7 genotype and the 7th day after anthesis being optimal for maximizing bioactive compounds. This study highlights the potential for developing superior okra varieties in Indonesia.

##plugins.themes.bootstrap3.article.details##

References
Abdillah SM, Syukur M, Suwarno WB, Ritonga AW, Wahyudi A. 2023. Genotype sensitivity and adaptability for fruit yield in red and green okra on environmental change. Biodiversitas 24 (8): 4289-4298. DOI: 10.13057/biodiv/d240810.
Adebo OA, Medina-Meza IG. 2020. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 25: 927. DOI: 10.3390/molecules25040927.
Andreanto A, Yasin H, Rusgiyono A. 2021. Implementation of R-Shiny for biplot analysis of principal components (Case study: Contraceptive use among active KB participants in Central Java Province in 2019). Jurnal Gaussian 10 (4): 499-507. DOI: 10.14710/j.gauss.v10i4.33097.
Anjani PP, Damayanthi E, Rimbawan, Handharyani E. 2018. Antidiabetic potential of purple okra (Abelmoschus esculentus L.) extract in streptozotocin-induced diabetic rats. IOP Conf Ser: Earth Environ Sci 196: 012038. DOI: 10.1088/1755-1315/196/1/012038.
Arista RA, Priosoeryanto BP, Nurcholis W. 2022. Profile volatile compounds in essential oils on different parts of cardamom with antioxidant activity. Biointerface Res Appl Chem 13 (4): 328. DOI: 10.33263/BRIAC134.328.
Bawa SH, Badrie N. 2016. Nutrient profile, bioactive components, and functional properties of okra (Abelmoschus esculentus (L.) Moench). In: Watson RR, Preedy VR (eds). Fruits Vegetables Herbs. Academic Press, London. DOI: 10.1016/B978-0-12-802972-5.00018-4.
Bedeian AG, Mossholder KW. 2000. On the use of the coefficient of variation as a measure of diversity. Organ Res Methods 3 (3): 285-297. DOI: 10.1177/109442810033005.
Chandra P, Arora DS. 2017. Antioxidant compounds derived from plants, description and mechanism of phytochemicals. J Agroecol Nat Resour Manag 4 (1): 55-59.
Chandrasekara A, Shahidi F. 2018. Herbal beverages: Bioactive compounds and their role in disease risk reduction-A review. J Tradit Complement Med 8 (4): 451-458. DOI: 10.1016/j.jtcme.2017.08.006.
Costa G, Grangeia H, Figueirinha A, Figueiredo IV, Batista MT. 2016. Influence of harvest date and material quality on polyphenolic content and antioxidant activity of Cymbopogon citratus infusion. Ind Crop Prod 83: 738-745. DOI: 10.1016/j.indcrop.2015.12.008.
Daliu P, Annunziata G, Tenore GC, Santini A. 2020. Abscisic acid identification in okra, Abelmoschus esculentus L. (Moench): Perspective nutraceutical use for the treatment of diabetes. Nat Prod Res 34 (1): 3-9. DOI: 10.1080/14786419.2019.1637874.
Direktorat Jenderal Hortikultura. 2022. Pengumuman hasil pemeriksaan dan penilaian dokumen pendaftaran varietas hortikultura. Dirjen Hortikultura, Kementerian Pertanian Republik Indonesia. https://varitas.net/dbvarietas/daftar. [Indonesian]
Dubey P, Mishra S. 2017. A review on: Diabetes and okra (Abelmoschus esculentus). J Med Plants Stud 5 (3): 23-26.
Gemede HF, Haki GD, Beyene F, Woldegiorgis AZ, Rakshit SK. 2016. Proximate, mineral, and antinutrient compositions of indigenous okra (Abelmoschus esculentus) pod accessions: Implications for mineral bioavailability. Food Sci Nutr 4 (2): 223-233. DOI: 10.1002/fsn3.282.
Gemede HF, Ratta N, Haki GD, Woldegiorgis AZ, Beyene F. 2015. Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. J Food Process Technol 6 (458): 2. DOI: 10.4172/2157-7110.1000458.
Ghasemzadeh A, Jaafar HZE. 2011. Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). Intl J Mol Sci 12 (2): 1101-1114. DOI: 10.3390/ijms12021101.
González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. 2011. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 51 (4): 331-362. DOI: 10.1080/10408390903584094.
Halder J, Sanwal SK, Rai AK, Rai AB, Singh B, Singh BK. 2015. Role of physico-morphic and biochemical characters of different okra genotypes in relation to population of okra shoot and fruit borer, Earias vittella (Noctuidae: Lepidoptera). Indian J Agric Sci 85 (2): 278-282. DOI: 10.56093/ijas.v85i2.46540.
Ishthifaiyyah SA, Syukur M, Trikoesoemaningtyas, Maharijaya A. 2021. Agro-morphological traits and harvest period assessment of winged bean (Psophocarpus tetragonolobus) genotypes for pods production. Biodiversitas 22 (2): 1069-1075. DOI: 10.13057/biodiv/d220264.
Jolliffe IT, Cadima J. 2016. Principal component analysis: A review and recent developments. Philos Trans A Math Phys Eng Sci 374 (2065): 20150202. DOI: 10.1098/rsta.2015.0202.
Khan S, Rafi Z, Baker A, Shoaib A, Alkhathami AG, Asiri M, Mansoor S. 2022. Phytochemical screening, nutritional value, anti-diabetic, anti-cancer, and anti-bacterial assessment of aqueous extract from Abelmoschus esculentus pods. Processes 10 (2): 183. DOI: 10.3390/pr10020183.
Kim J, Kim J, Shim J, Lee CY, Lee KW, Lee HJ. 2014. Cocoa phytochemicals: Recent advances in molecular mechanisms on health. Crit Rev Food Sci Nutr 54 (11): 1458-1472. DOI: 10.1080/10408398.2011.641041.
Liwanda N, Nurinayah I, Mubayyinah H, Pratiwi ARR, Wahyuningrum T, Ashari RZ, Nurcholis W. 2023. Effect of cow manure fertilizer on growth, polyphenol content, and antioxidant activity of purslane plants. Intl J Chem Biochem Sci 23 (1): 43-54.
Liwanda N, Syukur M, Nurcholis W. 2024. Investigation of macronutrient and minerals properties of different okra (Abelmoschus esculentus) genotypes grown in Indonesia using chemometric analysis. Intl J Agric Biol 31 (3): 192-198. DOI: 10.17957/IJAB/15.2131.
Negro C, Tommasi L, Miceli A. 2003. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol 87 (1): 41-44. DOI: 10.1016/S0960-8524(02)00202-X.
Ngangbam P, Jahangir K. 2011. Effect of age of harvest on fruit quality of okra (Abelmoschus esculentus L.). J Environ Res Dev 5: 615-622.
Nurcholis W, Alfadzrin R, Izzati N, Arianti R, Vinnai BÁ, Sabri F, Artika IM. 2022. Effects of methods and durations of extraction on total flavonoid and phenolic contents and antioxidant activity of Java cardamom (Amomum compactum Soland Ex Maton) fruit. Plants 11 (17): 2221. DOI: 10.3390/plants11172221.
Nurcholis W, Iqbal TM, Sulistiyani S, Liwanda N. 2023. Profile of secondary metabolites in different parts of the butterfly pea (Clitoria ternatea) plant with antioxidant activity. Yuzuncu Y?l Univ J Agric Sci 33 (2): 231-247. DOI: 10.29133/yyutbd.1251495.
Nwangburuka CC, Kehinde OB, Adegbite OA, Denton OA. 2011. Mitotic chromosomes in Abelmoschus esculentus (L.) Moench. Ann Biol Res 2: 85-90.
Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, Spigelman A, MacDonald P, Wishart D, Li S, Xia J. 2024. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res 52: W398-W406. DOI: 10.1093/nar/gkae253.
Petropoulos S, Fernandes A, Barros L, Ciric A, Sokovic M, Ferreira IC. 2017. The chemical composition, nutritional value and antimicrobial properties of Abelmoschus esculentus seeds. Food Funct 8 (12): 4733-4743. DOI: 10.1039/C7FO01446E.
Petropoulos S, Fernandes Â, Barros L, Ferreira IC. 2018. Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chem 242: 466-474. DOI: 10.1016/j.foodchem.2017.09.082.
Roleira FM, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F. 2015. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem 183: 235-258. DOI: 10.1016/j.foodchem.2015.03.039.
Romdhane MH, Chahdoura H, Barros L, Dias M, Corrêa RCG, Morales P, Ferreira IC. 2020. Chemical composition, nutritional value, and biological evaluation of Tunisian okra pods (Abelmoschus esculentus L. Moench). Molecules 25: 4739. DOI: 10.3390/molecules25204739.
Roughani A, Mehdi MS, Moradi P, Abdossi V. 2018. Agromorphological study on several accessions of garden cress (Lepidium sativum - Brassicaceae) in Iran. Pak J Bot 50 (2): 655-660.
Roy A, Shrivastava SL, Mandal SM. 2014. Functional properties of okra Abelmoschus esculentus L. (Moench): Traditional claims and scientific evidences. Plant Sci Today 1 (3): 121-130. DOI: 10.14719/pst.2014.1.3.63.
Saunders LJ, Russell RA, Crabb DP. 2012. The coefficient of determination: What determines a useful R2 statistic?. Invest Ophthalmol Vis Sci 53 (11): 6830-6832. DOI: 10.1167/iovs.12-10598.
Speisky H, Shahidi F, Costa de Camargo A, Fuentes J. 2022. Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties. Antioxidants 11 (1): 133. DOI: 10.3390/antiox11010133.
Vagiri M, Conner S, Stewart D, Andersson SC, Verrall S, Johansson E, Rumpunen K. 2015. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem 172: 135-142. DOI: 10.1016/j.foodchem.2014.09.041.
Wu DT, Nie XR, Shen DD, Li HY, Zhao L, Zhang Q, Qin W. 2020. Phenolic compounds, antioxidant activities, and inhibitory effects on digestive enzymes of different cultivars of okra (Abelmoschus esculentus). Molecules 25: 1276. DOI: 10.3390/molecules25061276.
Xia F, Zhong Y, Li M, Chang Q, Liao Y, Liu X, Pan R. 2015. Antioxidant and anti-fatigue constituents of okra. Nutrients 7 (10): 8846-8858. DOI: 10.3390/nu7105435.
Xu Y, Burton S, Kim C, Sismour E. 2016. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia?grown grape varieties. Food Sci Nutr 4 (1): 125-133. DOI: 10.1002/fsn3.264.
Yora M, Syukur M, Sobir S. 2018. Characterization of phytochemicals and yield components in various okra (Abelmoschus esculentus) genotypes. Biodiversitas 19: 2323-2328. DOI: 10.13057/biodiv/d190641.
Yusuf M, Fitria F, Risnawati R, Susanti R, Alqamari M, Khair H, Alridiwirsah A. 2023. Application of potassium fertilizer and organic fertilizer for rabbits on the growth and years of okra (Albemoschus esculentus L). J Agron Tanaman Tropika 5 (1): 185-192. DOI: 10.36378/juatika.v5i1.2716.
Zuhdi AMH, Suryawati S, Djunaidi A. 2018. Pengaruh umum panen terhadap aktivitas antioksidan dan kualitas buah okra merah (Abelmoschus esculentus L. Moench). Agrovigor: Jurnal Agroekoteknologi, 11 (2): 113-119. [Indonesian]

Most read articles by the same author(s)

1 2 3 4 5 > >>