Phylogenetic relationship of local rice from Central Java, Indonesia with Pokkali variety based on Single Nucleotide Polymorphism (SNP) markers

##plugins.themes.bootstrap3.article.main##

QORI NUR FAUZIAH
EDI PURWANTO
MUJI RAHAYU

Abstract

Abstract. Fauziah QN, Purwanto E, Rahayu M. 2024. Phylogenetic relationship of local rice from Central Java, Indonesia with Pokkali variety based on Single Nucleotide Polymorphism (SNP) markers. Biodiversitas 25: 3965-3973. Rice (Oryza sativa L.) is a major food crop in Asia particularly susceptible to the effects of climate change, with drought being a significant threat to productivity, potentially reducing yields by up to 50%. Indonesia is the largest producer of rice in Asia, with Central Java contributing up to 18% of the total, but the production of high-yielding varieties remains constrained. The objective of plant breeding is to ensure the sustainability of rice production by developing superior varieties. Therefore, this study aimed to develop local Central Java rice varieties tolerant to drought using the unique identification power of Single Nucleotide Polymorphism (SNP) markers. The potential impact of this research is the development of drought-tolerant rice varieties that could significantly improve rice production in Central Java. The experiment was conducted in Karanganyar and at the UGM campus, comprising several stages, including isolation, DNA amplification, and sequencing analysis. The results showed that based on sequencing analysis using BLAST, SNP was present in both the control and local rice varieties. The sequencing results were analysed for phylogenetic relationship using MEGA 11, showing thatPutih Mutiara (Klaten), Merah Sengreng (Boyolali), and Merah Wangi (Klaten) had the closest evolutionary relationship, and the most identical genetic structure to Pokkali varietycompared to the two controls (IR64 and Ciherang), and three local rice varieties namely Putih Mentikwangi (Karanganyar), Hitam Mutiara (Karanganyar), and Hitam Cempo (Boyolali).

##plugins.themes.bootstrap3.article.details##

References
Aboul-Maaty NAF, Oraby HAS. 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull Natl Res Cent 43: 25. DOI: 10.1186/s42269-019-0066-1.
Alqahtani A, Almutairy M. 2023. Evaluating the performance of multiple sequence alignment programs with application to genotyping SARS-CoV-2 in the Saudi population. Computation 11 (11): 212. DOI: 10.3390/computation11110212.
Auria RS, Puspitaningrum DA, Widayanto B. 2022. Potensi subsektor tanaman pangan komoditas padi di Kabupaten Klaten Provinsi Jawa Tengah. AGRIFITIA: J Agribus Plant 2 (1): 14-21. DOI: 10.55180/aft.v2i1.199.
Badan Pusat Statistik Indonesia. 2024. Indonesia Rice Area, Yield, and Production. https://ipad.fas.usda.gov/countrysummary/Default.aspx?id =ID&crop=Rice. [Indonesian]
Cao S, Wang Y, Li X, Gao F, Feng J, Zhou Y. 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants 9 (4): 455. DOI: 10.3390/plants9040455.
Chrisnawati L, Ernawiati E, Yulianty Y, Hariri MR. 2022. Polymorphism analysis of drought tolerance gene OsDREB2A in Indonesian local rice from Lampung, Indonesia. Biodiversitas 23 (12): 6352-6357. DOI: 10.13057/biodiv/d231232.
Degalez F, Jehl F, Muret K, Bernard M, Lecerf F, Lagoutte L, Désert C, Pitel F, Klopp C, Lagarrigue S. 2021. Watch out for a second SNP: Focus on multi-nucleotide variants in coding regions and rescued stop-gained. Front Genet 12: 659287. DOI: 10.3389/fgene.2021.659287.
Dhamira A, Irham I. 2020. the impact of climatic factors towards rice production in Indonesia. Agro Ekonomi 31: 1-13. DOI: 10.22146/ae.55153.
Domazet-Lošo M, Haubold B. 2009. Efficient estimation of pairwise distances between genomes. Bioinformatics 25 (24): 3221-3227. DOI: 10.1093/bioinformatics/btp590.
Edwards RJ. 2019. Phylogenetic Tree Rooting. Elsevier, Amsterdam. DOI: 10.1016/B978-0-12-809633-8.20258-6.
Elvina TS, Siregar A, Ginting R. 2023. Analysis of factors influencing rice production in Labuhan Batu District. J Soc Res 2 (9): 3305-3317. DOI: 10.55324/josr.v2i9.1263.
Eren K, Taktakoglu N, Pirim I. 2023. DNA sequencing methods: From past to present. Eurasian J Med 54: S47-S56. DOI: 10.5152/eurasianjmed.2022.22280.
Gunter C. 2024. Polymorphism. National Human Genome Research Institute. https://www.genome.gov/genetics-glossary/Polymorphism
Gupta N. 2019. DNA extraction and polymerase chain reaction. J Cytol 36 (2): 116. DOI: 10.4103/JOC.JOC_110_18.
Hadjoeningtijas OD, Purnawanto AM. 2013. Keragaman padi gogo lokal di Kabupaten Banyumas Jawa Tengah. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto 15 (2): 69-77. [Indonesian]
Hassan MA, Dahu N, Hongning T, Qian Z, Yueming Y, Yiru L, Shimei W. 2023. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Front Plant Sci 14: 1215371. DOI: 10.3389/fpls.2023.1215371.
Herawati R, Alnopri A, Masdar M, Simarmata M, Sipriyadi S, Sutrawati M. 2021. Identification of drought tolerant and molecular analysis of DREB2A and BADH2 genes and yield potensial of lines from single crossing bengkulu local rice varieties. Biodiversitas 22 (2): 785-793. DOI: 10.13057/biodiv/d220232.
Hrmova M, Hussain SS. 2021. Plant transcription factors involved in drought and associated stresses. Intl J Mol Sci 22 (11): 5662. DOI: 10.3390/ijms22115662.
Jadhao KR, Samal KC, Pradhan SK, Rout GR. 2014. Studies on molecular characterization of DREB gene in indica rice (Oryza sativa L.). Hereditary Genet 3 (3): 1-12. DOI: 10.4172/2161-1041.1000133.
Kamarudin Z, Yusop M, Tengku Muda Mohamed M, Ismail M, Harun A. 2018. Growth performance and antioxidant enzyme activities of advanced mutant rice genotypes under drought stress condition. Agronomy 8 (12): 279. DOI: 10.3390/agronomy8120279.
KAPA BIOSYSTEMS. 2020. KAPA2G Fast HotStart PCR Kit. https://n-genetics.com/files/co/Documents/manual/kapa_11065.pdf
Kefelegn N, Haile G, Palanivel H. 2021. Effect of plant tissues on DNA quantity and quality of barley (Hordeum vulgare) validating through PCR technique. bioRxiv 2021: 10. DOI: 10.1101/2021.10.28.466350.
Kress WJ, Prince LM, Williams KJ. 2002. The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. Am J Bot 89 (10): 1682-1696. DOI: 10.3732/ajb.89.10.1682.
Lathif Y, Listyorini D, Suharti S. 2018. Varietas padi lokal Jawa Timur tahan cekaman kekeringan berdasarkan gen DREB2A. Biotropika 6: 89-95. DOI: 10.21776/ub.biotropika.2018.006.03.03. [Indonesian]
Lee PY, Costumbrado J, Hsu C-Y, Kim YH. 2012. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 62: 3923. DOI: 10.3791/3923.
Li B, Du X, Fei Y, Wang F, Xu Y, Li X, Li W, Chen Z, Fan F, Wang J, Tao Y, Jiang Y, Zhu Q-H, Yang J. 2021. Efficient breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9. Rice 14 (1): 86. DOI: 10.1186/s12284-021-00527-3.
Matlock B. 2015. Assessment of Nucleic Acid Purity. Technical Note 52646. Thermo Fisher Scientific, Wilmington, MA, USA.
Mackill DJ, Khush GS. 2018. IR64: A high-quality and high-yielding mega variety. Rice 11 (1): 18. DOI: 10.1186/s12284-018-0208-3.
Miftahudin M, Putri RE, Chikmawati T. 2020. Vegetative morpho-physiological responses of four rice cultivars to drought stress. Biodiversitas 21 (8): 3727-3734. DOI: 10.13057/biodiv/d210840.
Munjal G, Hanmandlu M, Srivastava S. 2019. Phylogenetics algorithms and applications. In: Hu Y-C, Tiwari S, Mishra KK, Trivedi MC (eds). Ambient Communications and Computer Systems. Springer Singapore, Singapore. DOI: 10.1007/978-981-13-5934-7_17.
Nestor BJ, Bayer PE, Fernandez CGT, Edwards D, Finnegan PM. 2023. Approaches to increase the validity of gene family identification using manual homology search tools. Genetica 151 (6): 325-338. DOI: 10.1007/s10709-023-00196-8.
Oguz MC, Aycan M, Oguz E, Poyraz I, Yildiz M. 2022. Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2 (4): 180-197. DOI: 10.3390/physiologia2040015.
Patmi YS, Pitoyo A, Solichatun, Sutarno. 2020. Effect of drought stress on morphological, anatomical, and physiological characteristics of Cempo Ireng cultivar mutant rice (Oryza sativa L.) strain 51 irradiated by gamma-ray. J Phys: Conf Ser 1436 (1): 012015. DOI: 10.1088/1742-6596/1436/1/012015.
Purwanto OD, Palobo F, Tirajoh S. 2020. Growth and yield of superior rice (Oryza sativa L.) varieties on different planting systems in Papua, Indonesia. SVU-Intl J Agric Sci 2 (2): 242-255. DOI: 10.21608/svuijas.2020.40825.1031.
Refli R, Muljopawiro S, Dewi K, Rachmawati D. 2015. Expression analysis of antioxidant genes in response to drought stress in the flag leaf of two Indonesian rice cultivars. Indones J Biotechnol 19 (1): 43. DOI: 10.22146/ijbiotech.8633.
Salsinha YCF, Nurbaiti S, Sebastian A, Indradewa D, Purwestri YA, Rachmawati D. 2022. Proline-related gene expressions contribute to physiological changes of East Nusa Tenggara (Indonesia) local rice cultivars during drought stress. Biodiversitas 23 (7): 3573-3583. DOI: 10.13057/biodiv/d230734.
Saud S, Wang D, Fahad S, Alharby HF, Bamagoos AA, Mjrashi A, Alabdallah NM, AlZahrani SS, AbdElgawad H, Adnan M, Sayyed RZ, Ali S, Hassan S. 2022. Comprehensive Impacts of climate change on rice production and adaptive strategies in China. Front Microbiol 13: 926059. DOI: 10.3389/fmicb.2022.926059.
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants (Basel) 10 (2): 259. DOI: 10.3390/plants10020259.
Sophian A, Purwaningsih R, Muindar M, Igirisa EPJ, Amirullah ML. 2021. Short Communication: Analysis of purity and concentration of DNA extracted from intron patho gene-spin extraction on crab processed food product samples. Asian J Trop Biotechnol 18 (1): 28-31. DOI: 10.13057/biotek/c180103.
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. 2022. Biotechnological advances to improve abiotic stress tolerance in crops. Intl J Mol Sci 23: 12053. DOI: 10.3390/ijms231912053.
Wang X, Jing Z-H, He C, Liu Q-Y, Jia H, Qi J-Y, Zhang H-L. 2021. Breeding rice varieties provides an effective approach to improve productivity and yield sensitivity to climate resources. Eur J Agron 124: 126239. DOI: 10.1016/j.eja.2021.126239.
Wittmeier P, Hummel S. 2022. Agarose gel electrophoresis to assess PCR product yield: Comparison with spectrophotometry, fluorometry and qPCR. BioTechniques 72 (4): 155-158. DOI: 10.2144/btn-2021-0094.
Zou Y, Zhang Z, Zeng Y, Hu H, Hao Y, Huang S, Li B. 2024. Common methods for phylogenetic tree construction and their implementation in R. Bioengineering 11 (5): 480. DOI: 10.3390/bioengineering11050480.

Most read articles by the same author(s)

1 2 > >>