Floristic composition and carbon sequestration of traditional agroforestry on peatland in Rimbo Panjang, Kampar, Riau, Indonesia

##plugins.themes.bootstrap3.article.main##

MAYTA NOVALIZA ISDA
SITI FATONAH
YULMINARTI
NUR ZARAH OKTARINA
DEWI INDRIYANI ROSLIM

Abstract

Abstract. Isda MN, Fatonah S, Yulminarti, Oktarina NZ, Roslim DI. 2025. Floristic composition and carbon sequestration of traditional agroforestry on peatland in Rimbo Panjang, Kampar, Riau, Indonesia. Biodiversitas 26: 470-479. Trees in agroforestry systems contribute to long-term carbon sequestration, helping to mitigate climate change. Traditional agroforestry is characterized by multifunctionality through the use a variety of native trees to maintain ecological balance and support local livelihoods. This study aimed to determine the plant composition of traditional agroforestry in Rimbo Panjang Village, Kampar, Riau, Indonesia, its utilization, and its role in carbon sequestration. Observations were made in two hamlets, namely Dusun 1 and Dusun 2, where both hamlets have traditional agroforestry systems. Observation on floristic composition was conducted by counting the number of individuals of each species and the diameter at breast height of each individual plant. Carbon sequestration was calculated based on the above-ground biomass determined using an allometric formula accounting for trunk diameter and wood density. The results showed that traditional agroforestry in Dusun 2 had a higher number of plant species, with a total of 17 species, compared to Dusun 1, which had 11 species. The dominant species in Dusun 1 was Cocos nucifera, while in Dusun 2 was Durio zibethinus. Plants in this agroforestry system have a variety of benefits, both for self-consumption and being marketed for domestic uses and as industrial raw materials. The average carbon sequestration in Rimbo Panjang Village was 508.65 tons/ha CO2 equivalent (CO2e), with carbon sequestration in Dusun 2 (618,3 tons/ha CO2e) higher than that of Dusun 1 (399 tons/ha CO2e). The high plant diversity in this agroforestry system supports community livelihoods and plays an important role in climate change mitigation through its role in carbon sequestration. These benefits highlight the need to support and develop sustainable agroforestry practices as a sustainable land use strategy, especially in Riau's extensively degraded peatlands.

##plugins.themes.bootstrap3.article.details##

References
Akpalu SE, Anglaaere L, Damnyag L, Dawoe EK, Abunyewa AA, Akpalu MM. 2023. Floristic composition of agroforestry parklands in the semi-arid zone of Ghana: A special focus on Faidherbia albida (Delile) A. Chev. Trees For People 9: 100310. DOI: 10.1016/j.tfp.2022.100310.
Alao JS, Shuaibu RB. 2013. Agroforestry practices and concepts in sustainable land use systems in Nigeria. J Hortic For 5 (10): 156-159. DOI: 10.5897/JHF11.055.
Anda M, Ritung S, Suryani E, Hikmat M, Yatno E, Mulyani A, Subandiono RE, Suratman, Husnain. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 402: 115235. DOI: 10.1016/j.geoderma.2021.115235.
Annisa W, Susilawati A, Fahmi A, Nursyamsi D. 2021. Potential of agroforestry system on peat land to enhance food security and environmental sustainability. E3S Web Conf 305: 05005. DOI: 10.1051/e3sconf/202130505005.
Barrios E, Valencia V, Jonsson M, Brauman A, Hairiah K, Mortimer PE, Okubo S. 2018. Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Intl J Biodivers Sci Ecosyst Serv Manag 14 (1): 1-16. DOI: 10.1080/21513732.2017.1399167.
Brown S. 1997. Estimating Biomass and Biomass Change of Tropical Forests: A Primer. FAO Forestry Paper, Rome.
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99. DOI: 10.1007/s00442-005-0100-x.
Dekeba S, Nigatu L, Mohammed M. 2019. Floristic composition of homegarden agroforestry system in Habro District, Oromia Regional State, Ethiopia. Oct J Environ Res 7 (3): 74-86.
Duffy C, Toth GG, Hagan RP, McKeown PC, Rahman SA, Widyaningsih Y, Sunderland TC, Spillane C. 2021. Agroforestry contributions to smallholder farmer food security in Indonesia. Agrofor Syst 95 (6): 1109-1124. DOI: 10.1007/s10457-021-00632-8.
Eddy WC, Yang WH. 2022. Improvements in soil health and soil carbon sequestration by an agroforestry for food production system. Agric Ecosyst Environ 333: 107945. DOI: 10.1016/j.agee.2022.107945.
Fahad S, Chavan SB, Chichaghare AR et al. 2022. Agroforestry systems for soil health improvement and maintenance. Sustainability 14 (22): 14877. DOI: 10.3390/su142214877.
Guo Z, Wang Z, Luo Y, Ma L, Hu X, Chen F, Li D, Jia M. 2024. Extraction and identification of bioactive compounds from areca nut (Areca catechu L.) and potential for future applications. Food Front 5 (5): 1909-1932. DOI: 10.1002/fft2.443.
Harenda KM, Lamentowicz M, Samson M, Chojnicki BH. 2018. The role of peatlands and their carbon storage function in the context of climate change. In: Zielinski T, Sagan I, Surosz W (eds). Interdisciplinary Approaches for Sustainable Development Goals: Economic Growth, Social Inclusion and Environmental Protection. Springer, Cham. DOI: 10.1007/978-3-319-71788-3_12.
Hartoyo AP, Khairunnisa S, Pamoengkas P, Solikhin A, Siregar IZ, Prasetyo LB. 2022. Estimating carbon stocks of three traditional agroforestry systems and their relationships with tree diversity and stand density. Biodiversitas 23 (12): 6137-6146. DOI: 10.13057/biodiv/d231207.
Hartoyo AP, Siregar IZ, Prasetyo LB, Thelaide I. 2016. Biodiversity, carbon stocks and community monitoring in traditional agroforestry practices: Preliminary results from two investigated villages in Berau, East Kalimantan. Procedia Environ Sci 33: 376-385. DOI: 10.1016/j.proenv.2016.03.088.
Hiola AS, Soemarno, Cahyono ED, Prayogo C. 2024. The traditional agroforestry system and community welfare: Evidence from Dulamayo, Indonesia. Univ J Agric Res 12 (1): 96-107. DOI: 10.13189/ujar.2024.120110.
Iskandar BS, Suryana Y, Mulyanto D, Iskandar J, Gunawan R. 2023. Ethnomedicinal aspects of Sundanese traditional homegarden: A case study in rural Sumedang, West Java, Indonesia. J Trop Ethnobiol 6 (1): 57-78. DOI: 10.46359/jte.v6i1.167.
Jaya A, Elia A, Antang EU, Octora M, Ichriani GI, Dohong S, Sulistiyanto Y. 2022. A study of agroforestry farming for tropical peatland conservation and rehabilitation in Central Kalimantan, Indonesia. Mires Peat 28 (22): 1-34. DOI: 10.19189/MaP.2021.OMB.StA.2368.
Jose S. 2012. Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85: 1-8. DOI: 10.1007/s10457-012-9517-5.
Jumiyati S, Frimawaty E. 2024. Application of edu-agrotourism and agroforestry: Patterns of land use on conservation in the buffer area. Intl J Conserv Sci 15 (1): 657-672. DOI: 10.36868/IJCS.2024.01.19.
Kabir ME, Webb EL. 2008. Floristics and structure of southwestern Bangladesh homegardens. Intl J Biodivers Sci Manag 4 (1): 54-64. DOI: 10.1080/17451590809618183.
Kasi NS, Ohorella S, Irnawati. 2024. Struktur dan komposisi serta profil agroforestri tradisional di Kampung Teluk Dore Kabupaten Sorong. Jurnal Ilmu Pertanian dan Kehutanan 2: 11-20. [Indonesian]
Kassie GW. 2018. Agroforestry and farm income diversification: Synergy or trade-off? The case of Ethiopia. Environ Syst Res 6: 8. DOI: 10.1186/s40068-017-0085-6.
Kaushal R, Mandal D, Panwar P, Kumar P, Tomar JM, Mehta H. 2021. Soil and water conservation benefits of agroforestry. In: Shit PK, Pourghasemi HR, Adhikary PP, Bhunia GS, Sati VP (eds). Forest Resources Resilience and Conflicts. Elsevier, Amsterdam. DOI: 10.1016/B978-0-12-822931-6.00020-4.
Kementerian Lingkungan Hidup dan Kehutanan (KLHK). 2023. Peta Tutupan Lahan. Kementerian Lingkungan Hidup dan Kehutanan, Jakarta. [Indonesian]
Kittur BH, Upadhyay AP, Jhariya MK, Raj A, Banerjee A. 2024. Agroforestry for resource diversification and sustainable development. In: Jhariya MK, Meena RS, Banerjee A, Kumar S, Raj A (eds). Agroforestry for Carbon and Ecosystem Management. Academic Press, London. DOI: 10.1016/B978-0-323-95393-1.00028-2.
Koivunen I, Muotka T, Jokikokko M, Virtanen R, Jyväsjärvi J. 2023. Downstream impacts of peatland drainage on headwater stream biodiversity and ecosystem functioning. For Ecol Manag 543: 121143. DOI: 10.1016/j.foreco.2023.121143.
Kuyah S, Sileshi GW, Luedeling E, Akinnifesi FK, Whitney CW, Bayala J, Kuntashula E, Dimobe K, Mafongoya PL. 2020. Potential of agroforestry to enhance livelihood security in Africa. In: Dagar JC, Gupta SR, Teketay D (eds). Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges. Springer, Singapore. DOI: 10.1007/978-981-15-4136-0_4.
Lelamo LL. 2021. Review on the indigenous multipurpose agroforestry tree species in Ethiopia: Management, their productive and service roles and constraints. Heliyon 7 (9): e07874. DOI: 10.1016/j.heliyon.2021.e07874.
Mac Dowell N, Fennell PS, Shah N, Maitland GC. 2017. The role of CO2 capture and utilization in mitigating climate change. Nat Clim Chang 7 (4): 243-249. DOI: 10.1038/nclimate3231.
Maftu’ah E, Susilawati A, Sulaeman Y. 2021. Agroforestry for restoration of degraded peatlands. E3S Web Conf 305: 03001. DOI: 10.1051/e3sconf/202130503001.
Mahmud AA, Raj A, Jhariya MK. 2021. Agroforestry systems in the tropics: A critical review. Intl J Agric Biol Res 37 (1): 83-87. DOI: 10.35248/0970-1907.21.37.83-87.
Mardhiansyah M, Asyari TA, Darlis VV, Mursyid H. 2022. Persepsi masyarakat terhadap agroforestri pada lahan gambut di Provinsi Riau. J For Sci Avicennia 5 (2): 151-158. DOI: 10.22219/avicennia.v5i2.22124. [Indonesian]
Marques MA, Anjos LH, Delgado ARS. 2022. Land recovery and soil management with agroforestry systems. Span J Soil Sci 19 (12): 10457. DOI: 10.3389/sjss.2022.10457.
Marsden C, Martin-Chave A, Cortet J, Hedde M, Capowiez Y. 2020. How agroforestry systems influence soil fauna and their functions-a review. Plant Soil 453: 29-44. DOI: 10.1007/s11104-019-04322-4.
Masebo N, Menamo M. 2016. A review paper on: The role of agroforestry for rehabilitation of degraded soil. J Biol Agric Healthc 6 (5): 128-135.
Masure A, Martin P, Lacan X, Rafflegeau S. 2023. Promoting oil palm-based agroforestry systems: An asset for the sustainability of the sector. Cah Agric 32: 16. DOI: 10.1051/cagri/2023008.
Mortimer R, Saj S, David C. 2018. Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor Syst 92 (6): 1639-1657. DOI: 10.1007/s10457-017-0113-6.
Nair PR, Kumar BM, Nair VD, Nair PR, Kumar BM, Nair VD. 2021. Agroforestry for Biodiversity Conservation. An Introduction to Agroforestry: Four Decades of Scientific Developments. Springer, Cham. DOI: 10.1007/978-3-030-75358-0.
Nath PC, Thangjam U, Kalita SS, Sahoo UK, Giri K, Nath AJ. 2022. Tree diversity and carbon important species vary with traditional agroforestry managers in the Indian Eastern Himalayan region. Environ Sci Pollut Res 29 (43): 64732-64744. DOI: 10.1007/s11356-022-20329-4.
Ngaji AU, Baiquni M, Suryatmojo H, Haryono E. 2021. Assessing the sustainability of traditional agroforestry practices: A case of mamar agroforestry in kupang-indonesia. For Soc 5 (2): 438-457. DOI: 10.24259/fs.v5i2.14380.
Nunes LJ. 2023. The rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments 10 (4): 66. DOI: 10.3390/environments10040066.
Okullo JB, Obua J, Kaboggoza JR, Aluma JR. 2003. Traditional agroforestry systems, tree uses and management in northern Uganda. Uganda J Agric Sci 2003 (8): 5-12.
Pancholi R, Yadav R, Gupta H, Vasure N, Choudhary S, Singh MN, Rastogi M. 2023. The role of agroforestry systems in enhancing climate resilience and sustainability-A review. Intl J Environ Clim Chang 13 (11): 4342-4353. DOI: 10.9734/ijecc/2023/v13i113615.
Pinho RC, Miller RP, Alfaia SS. 2012. Agroforestry and the improvement of soil fertility: A view from Amazonia. Appl Environ Soil Sci 2012: 616383. DOI: 10.1155/2012/616383.
Pitopang R, Atmoko AT, Mertosono SR, Ramawangsa PA. 2021. Plant diversity in agroforestry system and its traditional use by three different ethnics in Central Sulawesi Indonesia. IOP Conf Ser: Earth Environ Sci 886 (1): 012058. DOI: 10.1088/1755-1315/886/1/012058.
Raihan A, Begum RA, Nizam M, Said M, Pereira JJ. 2022. Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environ Ecol Stat 29 (3): 477-507. DOI: 10.1007/s10651-022-00532-9.
Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS. 2019. Agroforestry: A holistic approach for agricultural sustainability. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds). Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. DOI: 10.1007/978-981-13-6830-1_4.
Rossita A, Boer R, Hein L, Nurrochmat D, Riqqi A. 2023. Peatland fire regime across Riau peat hydrological unit, Indonesia. For Soc 7 (1): 76-94. DOI: 10.24259/FS.V7I1.21996.
Salve A, Bhardwaj DR, Tahkur CL. 2018. Floristic composition and distribution pattern of plant communities under different agroforestry systems in Kinnaur, North-Western Himalayas. Res J Chem Environ Sci 2018: 34-51.
Sambou M, Koné B, Sambou S, Niang F, Sane S, Diatta M, Sambou H, Goudiaby A, Mbow C, Sambou B. 2024. Variation of biomass carbon stock within agroforestry systems in the Senegalese groundnut basin. Discov Sustain 5 (1): 35. DOI: 10.1007/s43621-024-00208-3.
Samosir I, Hafizianor, Yamani A. 2021. Analisis pengelolaan agroforestri tradisional pada masyarakat Desa Paraduan Kecamatan Ronggurnihuta Kabupaten Samosir. Jurnal Sylva Scienteae 4: 300-307. DOI: 10.20527/jss.v4i2.3340. [Indonesian]
Schuler HR, Alarcon GG, Joner F, dos Santos KL, Siminski A, Siddique I. 2022. Ecosystem services from ecological agroforestry in Brazil: A systematic map of scientific evidence. Land 11 (1): 83. DOI: 10.3390/land11010083.
Sharma N, Bohra B, Pragya N, Ciannella R, Dobie P, Lehmann S. 2016. Bioenergy from agroforestry can lead to improved food security, climate change, soil quality, and rural development. Food Energy Secur 5 (3): 165-183. DOI: 10.1002/fes3.87.
Siarudin M, Indrajaya Y, Hani A. 2020. Preliminary assessment on above ground carbon stock of agroforestry and monoculture crop systems in peatlands. IOP Conf Ser: Earth Environ Sci 449 (1): 012010. DOI: 10.1088/1755-1315/449/1/012010.
Siarudin M, Rahman SA, Artati Y, Indrajaya Y, Narulita S, Ardha MJ, Larjavaara M. 2021. Carbon sequestration potential of agroforestry systems in degraded landscapes in West Java, Indonesia. Forest 12 (6): 714. DOI: 10.3390/f12060714.
Sibelet N, Posada KE, Gutiérrez-Montes IA. 2019. Agroforestry systems provide firewood for livelihood improvement in Guatemala. Bois et Forêts des Tropiques 340: 91-102. DOI: 10.19182/bft2019.340. a31692.
Sileshi GW, Mafongoya PL, Nath AJ. 2020. Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. In: Dagar JC, Gupta SR, Teketay D (eds). Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges. Springer, Singapore. DOI: 10.1007/978-981-15-4136-0.
SNI. 2011. Pengukuran dan penghitungan cadangan karbon -Pengukuran lapangan untuk penaksiran cadangan karbon hutan (ground based forest carbon accounting). Kementrian Lingkungan Hidup dan Kehutanan, Jakarta. [Indonesian]
Strobl K, Moning C, Kollmann J. 2020. Positive trends in plant, dragonfly, and butterfly diversity of rewetted montane peatlands. Restor Ecol 28 (4): 796-806. DOI: 10.1111/rec.12957.
Sudiana N. 2018. Studi Luas dan Sebaran Lahan Gambut di Kabupaten Kampar Provinsi Riau. Jurnal Alami: Jurnal Teknologi Reduksi Risiko Bencana 2 (1): 47-56. DOI: 10.29122/alami.v2i1.2816. [Indonesian]
Tadesse E, Negash M, Asfaw Z. 2021. Impacts of traditional agroforestry practices, altitudinal gradients and households’ wealth status on perennial plants species composition, diversity, and structure in south-central Ethiopia. Agrofor Syst 95 (8): 1533-1561. DOI: 10.1007/s10457-021-00659-x.
Todou G, Kamblaba P, Nnanga JF, Djoebe A. 2021. Diversity and floristic composition of woody plants in traditional agrosystems of Sudano-Sahelian zone of Cameroon: Case of Meri in the Mandara Mountains. J Agric Environ Intl Dev 116 (2): 69-85. DOI: 10.36253/jaeid-13301.
Udawatta RP, Rankoth LM, Jose S. 2019. Agroforestry and biodiversity. Sustainability 11 (10): 2879. DOI: 10.3390/su11102879.
Udawatta RP, Rankoth LM, Jose S. 2021. Agroforestry for biodiversity conservation. In: Udawatta RP, Jose S (eds). Agroforestry and Ecosystem Services. Springer, Cham. DOI: 10.1007/978-3-030-80060-4_10.
Viñals E, Maneja R, Rufí-Salís M, Martí M, Puy N. 2023. Reviewing social-ecological resilience for agroforestry systems under climate change conditions. Sci Total Environ 869: 161763. DOI: 10.1016/j.scitotenv.2023.161763.
Viswanath S, Lubina PA. 2017. Traditional agroforestry systems. In: Dagar JC, Tewari VP (eds). Agroforestry: Anecdotal to Modern Science. Springer, Singapore. DOI: 10.1007/978-981-10-7650-3_3.
Weiwei L, Wenhua L, Moucheng L, Fuller AM. 2014. Traditional agroforestry systems: one type of globally important agricultural heritage systems. J Resour Ecol 5 (4): 306-313. DOI: 10.5814/j.issn.1674-764x.2014.04.004.
Widiyanto A, Hani A. 2021. Role and key success of agroforestry (A review). Jurnal Agroforestri Indonesia 4 (2): 69-80. [Indonesian]
Wirawan R. 2019. Alih fungsi lahan dan petani nenas di Desa Rimbo Panjang Kecamatan Tambang Kabupaten Kampar. JOM FISIP 6 (1): 1-3. [Indonesian]
Wiryono W, Puteri VN, Senoaji G. 2016. The diversity of plant species, the types of plant uses and the estimate of carbon stock in agroforestry system in Harapan Makmur Village, Bengkulu, Indonesia. Biodiversitas 17 (1): 249-255. DOI: 10.13057/biodiv/d170136.
Worku M, Bantihun A. 2017. Review on woody species and socio-economic roles of traditional agroforestry practices in Ethiopia. J Fund Renew Energy 7: 6. DOI: 10.4172/2090-4541.1000246.
Yoro KO, Daramola MO. 2020. CO2 emission sources, greenhouse gases, and the global warming effect. In: Rahimpour MR, Farsi M, Makarem MA (eds). Advances in Carbon Capture. Woodhead Publishing, Duxford. DOI: 10.1016/B978-0-12-819657-1.00001-3.
Zhu X, Liu W, Chen J et al. 2020. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: A review of evidence and processes. Plant Soil 453: 45-86. DOI: 10.1007/s11104-019-04377-3.

Most read articles by the same author(s)