Response of transgenic tobacco with P5CS gene expression to polyethylene glycol-induced drought stress

##plugins.themes.bootstrap3.article.main##

AHMAD RIDUAN
DJOKO SANTOSO
SUDARSONO

Abstract

Abstract. Riduan A, Santoso D, Sudarsono. 2024. Response of transgenic tobacco with P5CS gene expression to polyethylene glycol-induced drought stress. Biodiversitas 25: 3974-3984. Drought stress, a significant obstacle in plant growth and production, can be effectively addressed with the use of polyethylene glycol (PEG). This treatment has shown promise in screening plant germplasm responses to drought stress. The objectives of this experiment were to determine the effects of stress due to PEG treatment at 0%, 5%, or 10% concentration on growth, leaf proline content, and their correlation to stress responses in the T1 seedlings derived from five T0 transgenic Gombel Shili (GS) tobacco P5CS. Positive results of total nucleic acid PCR analysis in T1 seedling populations derived from each of the T0 plants indicated that the regenerated T0 plants were transgenic tobacco integrating P5CS transgene. Results of the experiment revealed that the effects of stress due to PEG treatment indicated stress due to PEG treatment (5% or 10%) reduced the growth plants of all tobacco plants. The stress sensitivity index categorized the T1 plants P5CS transgenic GS tobacco into tolerance, medium tolerance, and sensitivity against PEG-induced stress. Notably, the T1 plants P5CS transgenic GS tobacco exhibited better growth with higher plant height, leaf, biomass, and root dry weight compared to non-transgenic tobacco under stress and non-stress conditions. The over-expression of the P5CS gene led to a significant increase in leaf proline content after drought stress was observed in all transgenic tobacco compared to non-transgenic tobacco.

##plugins.themes.bootstrap3.article.details##

References
Abid M, Ali S, Qi LK, Zahoor R, Tian Z, Jiang D, Snider JL, Dai T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 8: 4615. DOI: 10.1038/s41598-018-21441-7.
Abraham E, Hourton-Cabassa C, Erdei L, Szabados L. 2010. Methods for determination of proline in plants. In: Sunkar R (eds). Plant Stress Tolerance. Humana Press, New Jersey. DOI: 10.1007/978-1-60761-702-0_20.
Adrees S, Khokhar MI, Fatima RN, Rehman S. 2024. In vitro effect of peg and proline on callus growth and minerals values in basmati rice (Oryza sativa). J Agric Sci 19: 118-130. DOI: 10.4038/jas.v19i1.10147.
Amir S, Sutar S, Singh SK, Baghela A. 2015. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quarantine 5: 74-81. DOI: 10.5943/ppq/5/2/6.
Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q. 2022. Mechanisms of abscisic acid-mediated drought stress responses in plants. Intl J Mol Sci 23 (3): 1084. DOI: 10.3390/ijms23031084.
Avci S, ?leri O, Demirkaya M. 2017. Determination of genotypic variation among sorghum cultivars for seed vigor, salt and drought stress. J Agric Sci 23 (3): 335-343. DOI: 10.15832/ankutbd.447645.
Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. 2013. Phenotyping common beans for adaptation to drought. Front Physiol 6 (4): 35. DOI: 10.3389/fphys.2013.00035.
Begna T. 2021. Impact of drought stress on crop production and its management options. Intl J Res Agron 4 (2): 66-74. DOI: 10.33545/2618060X.2021.v4.i2a.103.
Budiani A, Nugroho I, Minarsih H, Riyadi I. 2019. Regeneration of oil palm plantlets introduced by P5CS gene using Agrobacterium-mediated transformation. Menara Perkebunan 87 (2): 123-130. DOI: 10.22302/iribb.jur.mp.v87i2.336.
Cui ZH, Bi WL, Hao XY, Xu Y, Li PM, Walker MA, Wang QC. 2016. Responses of in vitro-grown plantlets (Vitis vinifera) to grapevine leafroll-associated virus-3 and PEG-induced drought stress. Front Physiol 7: 203. DOI: 10.1080/17429145.2017.1293852.
Culpepper T, Young J, Montague T, Sullivan D, Wherley B. 2019. Physiological responses in C3 and C4 turfgrasses under soil water deficit. HortScience 54: 2249-2256. DOI: 10.21273/HORTSCI14357-19.
Dababat AA, Imren M, Erginbas-Orakci G, Ashrafi S, Yavuzaslanoglu E, Toktay H, Pariyar SR, Elekcioglu HI, Morgounov A, Mekete T. 2015. The importance and management strategies of cereal cyst nematodes, Heterodera spp., in Turkey. Euphytica 202 (2): 173-188. DOI: 10.1007/s10681-014-1269-z.
Fonzo SD, Bellich B, Gamini A, Quadri N, Cesàro A. 2019. PEG hydration and conformation in aqueous solution: Hints to macromolecular crowding. Polymers 175: 57-64. DOI: 10.1016/j.polymer.2019.05.004.
Jian K, Xinmei H, Huiping Z, Risheng D. 2021. An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect. Agric Water Manag 255: 107008. DOI: 10.1016/j.agwat.2021.107008.
Kokkanti RR, Vemuri H, Gaddameedi A, Rayalacheruvu U. 2022. Variability in drought stress-induced physiological, biochemical responses and expression of DREB2A, NAC4 and HSP70 genes in groundnut (Arachis hypogaea L.). S Afr J Bot 144: 448-457. DOI: 10.1016/j.sajb.2021.09.025.
Laskari M, Menexes G, Kalfas I, Gatzolis I, Dordas C. 2022. Water stress effects on the morphological, physiological characteristics of maize (Zea mays L.), and on environmental cost. Agronomy 12: 2386. DOI: 10.3390/agronomy12102386.
Meher, Shivakrishna P, Ashok RK, Manohar RD. 2018. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J Biol Sci 25 (2): 285-289. S. DOI: 10.1016/j.sjbs.2017.04.008.
Mishra N, Tripathi MK, Tiwari S, Tripathi N, Sapre S, Ahuja A, Tiwari S. 2021. Cell suspension culture and in vitro screening for drought tolerance in soybean using polyethylene glycol. Plants (Basel) 10 (3): 517. DOI: 10.3390/plants10030517.
Murashige T, Skoog, F. 2006. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15: 473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.
Pawar KN, Veena VB. 2020. Evaluation of cotton genotypes for drought tolerance using PEG-6000 water stress by slanting glass plate technique. Intl J Curr Microbiol Appl Sci 9 (11): 3203-3212. DOI: 10.20546/ijcmas. 2020,911,386.
Popova L, Tsonev T, Lazova G, Stoinova, Z. 2006. Drought? and ABA?induced changes in photosynthesis of barley plants. Physiol Plantarum 96: 623-629. DOI: 10.1111/j.1399-3054.1996.tb00235.x.
Qi Y, Ma L, Ghani MI, Peng Q, Fan R, Hu X, Chen X. 2023. Effects of drought stress induced by hypertonic polyethylene glycol (PEG-6000) on Passiflora edulis sims physiological properties. Plants (Basel) 12 (12): 2296. DOI: 10.3390/plants12122296.
Rasool S, Ahmad P, Rehman MU, Arif A, Anjum NA. 2015. Achieving crop stress tolerance and improvement an overview of genomic techniques. Appl Biochem Biotechnol 177: 1395-1408). DOI: 10.1007/s12010-015-1830-9.
Razi K, Muneer S. 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 41 (5): 669-691. DOI: 10.1080/07388551.2021.1874280.
Reyes JAO, Casas DE, Gandia JL, Parducho MJL, Renovalles EM, Quilloy EP, Delfin EF. 2023. Polyethylene glycol-induced drought stress screening of selected Philippine high-yielding sugar cane varieties. J Agric Food Res 14: 100676. DOI: 10.1016/j.jafr.2023.100676.
Sabbioni G, Funck D, Forlani G. 2021. Enzymology and regulation of ?1 -pyroline-5- carboxylate synthetase 2 from rice. Front Plant Sci 12: 672702. DOI: 10.3389/fpls.2021.672702.
Sagar A, Rauf F, Mia MA, Shabi TH, Rahman T, Hossain AKMZ. 2020. Polyethylene glycol (PEG) Induced drought stress on five rice genotypes at early seedling stage. J Bangladesh Agric Univ 18 (3): 606-614. DOI: 10.5455/JBAU.102585.
Salisbury FB, Ross CW. 2009. Plant Physiology. Cengage Learning India Private Limited, Delhi.
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants (Basel) 10 (2): 259. DOI: 10.3390/plants10020259.
Sellamuthu G, Tarafdar A, Jasrotia RS, Chaudhary M, Vishwakarma H and Padaria JC. 2024. Introgression of ?1-pyrroline-5-carboxylate synthetase (PgP5CS) confers enhanced resistance to abiotic stresses in transgenic tobacco. Transgenic Res 33: 131-147. DOI: 10.1007/s11248-024-00385-x.
Sigit TPS, Suwarto S, Farid N. 2022. Drought stress: Responses and mechanisms in plants. Rev Agric Sci 10: 168-185. DOI: 10.7831/ras.10.0_168.
Wang Z, Yang Y, Yadav V, Zhao W, He Y, Zhang X, Wei C. 2022. Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Hortic Plant J 8 (5): 615-626. DOI: 10.1016/j.hpj.2022.06.009.
Xiaoyang Z, Xueping L, Yuan Z, Weixin C, Wangjin L. 2012. Cloning, characterization and expression analysis of ?1-pyrroline-5-carboxylate synthetase (P5CS) gene in harvested papaya (Carica papaya) fruit under temperature stress. Food Res Intl 49 (1): 272-279 DOI: 10.1016/j.foodres.2012.08.003.
Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M. 2020. Effect of Abiotic Stress on Crops. Sustainable Crop Production. IntechOpen. DOI: 10.5772/intechopen.88434.
Yahaya MA, Shimelis H. 2022. Drought stress in sorghum: Mitigation strategies, breeding methods and technologies: A review. J Agron Crop Sci 208: 127-142. DOI: 10.1111/jac.12573.
Zaib M, Zeeshan A, Aslam S, Bano S, Ilyas A, Abbas Z, Nazar A, Mumtaz S. 2023. Drought stress and plant production: A review with future prospects. Intl J Sci Res Eng Dev 6 (4): 1278-1293. DOI: 10.5281/zenodo.10447417.

Most read articles by the same author(s)

1 2 3 > >>