Effectiveness of micro-nanobubble aeration and phytoremediation in treating filtered palm oil mill effluent on bacteria diversity and water properties

##plugins.themes.bootstrap3.article.main##

RIA KARNO
ENDANG ARISOESILANINGSIH
IRFAN MUSTAFA
DIAN SISWANTO

Abstract

Abstract. Karno R, Arisoesilaningsih E, Mustafa I, Siswanto D. 2024. Effectiveness of micro-nanobubble aeration and phytoremediation in treating filtered palm oil mill effluent on bacteria diversity and water properties. Biodiversitas 25: 4340-4349. Palm oil waste treatment has gained much significance in recent years, as the palm oil industry has been on the rise. In addition, the biological removal of open treatment ponds and the subsequent activity of microorganisms, mainly bacteria, have been given special consideration. Therefore, this study aimed to evaluate the effectiveness of phytoremediation (Phyt) and micro-nanobubble (MnB) aeration technologies on the improvement of physicochemical properties of filtered palm oil mill secondary effluent (POMSE). The effect of the technologies on bacteria density and composition using a laboratory-scale reactor with 24-hour incubation was also explored. Metagenomic analysis using Next Generation Sequencing (NGS) and traditional methods, such as Total Plate Count (TPC) was used to evaluate bacteria density and composition. Physicochemical analyses were then conducted using an Indonesian standard method (SNI). The results showed that the MnB+Phyt reactor was more effective in reducing waste pollutants and meeting waste standards than control, MnB, or Phyt reactors after 24 hours. In addition, TPC counts showed that the highest bacteria density occurred at the 6-hour mark in the MnB+Phyt, Phyt, or MnB reactors compared to the control. Despite variations in bacteria composition among reactors, the dominant phylum and family were Pseudomonadota, Comamonadaceae, Zoogloeaceae, and Alcaligenaceae. The results also showed that MnB treatment significantly increased alpha diversity and altered genera composition. In conclusion, MnB aeration and phytoremediation technologies effectively reduced filtered POMSE pollutants with a removal percentage ranging from 28.37% to 56.69% under 24-hour treatment.

##plugins.themes.bootstrap3.article.details##

References
Abdurahman NH, Azhari NH. 2018. An integrated umas for pome treatment. J Water Reuse Desalin 8: 68-75. DOI: 10.2166/wrd.2016.124.
Abdurahman NH, Rosli YM, Azhari NH. 2013. The performance evaluation of anaerobic methods for palm oil mill effluent (POME) treatment: A review. Intl Perspect Water Quality Manag Pollut Cont 4: 87-106. DOI: 10.5772/54331.
Adzdzakiy MM, Sutarno S, Asyifa IZ, Sativa AR, Fiqri ARA, Fibriani A, Ristandi RB, Ningrum RA, Iryanto SB, Prasetyoputri A, Dharmayanthi AB, Saputra S. 2024. SARS-CoV-2 genetic variation and bacterial communities of naso-oropharyngeal samples in middle-aged and elderly COVID-19 patients in West Java, Indonesia. J Taibah Univ Med Sci 19 (1): 70-81. DOI: 10.1016/j.jtumed.2023.09.001.
Akan JC, Abdulrahman FI, Ayodele JT, Ogugbuaja VO. 2009. Impact of tannery and textile effluent on the chemical characteristics of Challawa River, Kano state, Nigeria. Elect J Environ Agric Food Chem 8 (10): 1008-1032.
Al-Baldawi IA, Yasin SR, Jasim SS, Abdullah SRS, Almansoory AF, Ismail NI. 2023. Removal kinetics of organic carbon from palm oil mill effluent by native duckweeds and its potential as a biofertilizer. J Water Process Eng 53: 103852. DOI: 10.1016/j.jwpe.2023.103852.
Alhaji MH, Sanaullah K, Lim SF, Khan A, Hipolito CN, Abdullah MO, Bhawani SA, Jamil T. 2016. Photocatalytic treatment technology for palm oil mill effluent (POME) - a review. Process Saf Environ Protect 102: 673-686. DOI: 10.1016/j.psep.2016.05.020.
Bala JD, Lalung J, Ismail N. 2014. Biodegradation of palm oil mill effluent (POME) by bacterial. Intl J Sci Res Pub 4 (1): 2250-3153. DOI: 10.1007/s40093-014-0079-6.
Bala JD, Lalung J, Ismail N. 2015. Studies on the reduction of organic load from palm oil mill effluent (POME) by bacterial strains. Intl J Recycling Organic Waste Agric 4 (1): 1-10. DOI: 10.1007/s40093-014-0079-6.
Bremner JM, Mulvaney CS. 1982. In: Page AL (eds). Methods of Soil Analysis, 2nd Edition. American Society of Agronomy, Madison, Wisconsin.
Cundell T. 2015. The limitations of the colonyforming unit in microbiology. European Pharm Rev 20 (6): 11-13.
Darajeh N, Idris A, Aziz AA, Truong P. 2014. Phytoremediation of palm oil mill secondary effluent (POMSE) by Chrysopogon zizanioides (L.) using artificial neural networks. Intl J Phytoremed 19 (5): 413-424. DOI: 10.1080/15226514.2016.1244159.
Darajeh N, Idris A, Fard Masoumi HR, Nourani A, Truong P, Sairi NA. 2016. Modeling BOD and COD removal from palm oil mill secondary effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J Environ Manag 181: 343-352. DOI: 10.1016/j.jenvman.2016.06.060.
Dashti AF, Salman NAS, Adnan R, Zahed MA. 2022. Palm oil mill effluent treatment using combination of low cost chickpea coagulant and granular activated carbon: Optimization via response surface methodology. Groundwater Sustain Dev 16: 100709. DOI: 10.1016/j.gsd.2021.100709.
Gerardi MH. 2003. Settleability Problems and Loss of Solids in The Activated Sludge Process. John Wiley and Sons, Hoboken. DOI: 10.1002/047147164X.
Ji B, Zhang M, Gu J, Ma Y, Liu Y. 2020. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Res 179: 115884. DOI: 10.1016/j.watres.2020.115884.
Ji B, Zhang X, Zhang S, Song H, Kong Z. 2019. Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing. J Biosci Bioeng 128 (6): 744-750. DOI: 10.1016/j.jbiosc.2019.06.007.
Jouanneau S, Recoules L, Durand MJ, Boukabache A, Picot V, Primault Y, Lakel A, Sengelin M, Barillon B, Thouand G. (2014). Methods for assessing biochemical oxygen demand (BOD): A review. Water Res 49: 62-82. DOI: 10.1016/j.watres.2013.10.066.
Karno R, Arisoesilaningsih E, Mustafa I, Siswanto D. 2024. The diversity of indigenous and potential bacteria as bioremediator of palm oil mill secondary effluent (POMSE) by metagenomics assessment. Biodiversitas 25 (3): 1194-1200. DOI: 10.13057/biodiv/d250335.
Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res 26 (12): 1721-1729. DOI: 10.1101/gr.210641.116.
Kong Z, Glick BR. 2017. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation. In: Poole RK (eds). Advances in Microbial Physiology. Elsevier Ltd, Amsterdam. DOI: 10.1016/bs.ampbs.2017.04.001.
Lin SY, Hameed A, Tsai CF, Young CC. 2021. Zeimonas arvi gen. nov., sp. nov., of the family Burkholderiaceae, harboring biphenyl- and phenolic acid-metabolizing genes, isolated from a long-term ecological research field. Antonie van Leeuwenhoek. Intl J General Mol Microbiol 114: 2101-2111. DOI: 10.1007/s10482-021-01664-x.
Madigan DJ, Richardson AJ, Carlisle AB, Weber SB, Brown J, Hussey NE. 2021. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J Mar Sci 78 (3): 867-883. DOI: 10.1093/icesjms/fsaa222.
Mao Y, Xia Y, Wang Z, Zhang T. 2014. Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data. Appl Microbiol Biotechnol 98 (15): 6885-6895. DOI: 10.1007/s00253-014-5756-x.
Mohd-Nor D, Ramli N, Sharuddin SS, Hassan MA, Mustapha NA, Ariffin H, Sakai K, Tashiro Y, Shirai Y, Maeda T. 2019. Dynamics of microbial populations responsible for biodegradation during the full-scale treatment of palm oil mill effluent. Microbes Environ 34 (2): 12-128. DOI: 10.1264/jsme2.ME18104.
Natalia M, Shoiful A, Ikbal Hasiany S, Priyanto FE, Arifudin, Setiyono, Noorain R. 2023. A series anaerobic-aerobic down-flow hanging sponge (DHS) reactor for the treatment of palm oil mill effluent (POME). IOP Conf Ser: Earth Environ Sci 1201: 012019. DOI: 10.1088/1755-1315/1201/1/012019.
Ng YS, Chan DJC. 2017. Wastewater phytoremediation by Salvinia molesta. J Water Process Eng 15: 107-115. DOI: 10.1016/j.jwpe.2016.08.006.
Oktorina AN, Achmad Z, Mary S. 2019. Phytoremediation of tofu wastewater using Eichhornia crassipes. J Physics: Conf Ser 1341 (5): 052009. DOI: 10.1088/1742-6596/1341/5/052009.
Poh PE, Ong WYJ, Lau EV, Chong MN. 2014. Investigation on micro-bubble flotation and coagulation for the treatment of anaerobically treated palm oil mill effluent (POME). J Environ Chem Eng 2 (2): 1174-1181. DOI: 10.1016/j.jece.2014.04.018.
Rusdianasari TA, Jaksen, Syakdani A. 2017. Treatment optimization of electrocoagulation (EC) in purifying palm oil mill effluents (POMEs). J Eng Technol Sci 49: 604-617. DOI: 10.5614/j.eng.technol.sci.2017.49.5.4.
Sa’At SKM, Yusoff MS, Zaman NQ, Ismail HA, Farraji H. 2022. Polishing treatment of palm oil mill effluent phytoremediation by Scirpus grossus. AIP Conf Proceed 2541: 040008. DOI: 10.1063/5.0116396.
Sidik DAB, Hairom NHH, Ahmad MK, Madon RH, Mohammad AW. 2020. Performance of membrane photocatalytic reactor incorporated with ZnO-Cymbopogon citratus in treating palm oil mill secondary effluent. Process Saf Environ Protect 143: 273-284. DOI: 10.1016/j.psep.2020.06.038.
Sidik DAB, Hairom NHH, Mohammad AW. 2019. Performance and fouling assessment of different membrane types in a hybrid photocatalytic membrane reactor (PMR) for palm oil mill secondary effluent (POMSE) treatment. Process Saf Environ Protect 130: 265-274. DOI: 10.1016/j.psep.2019.08.018.
Singh RP, Ibrahim MH, Esa N, Iliyana MS. 2010. Composting of waste from palm oil mill: A sustainable waste management practice. Rev Environ Sci Biotechnol 9 (4): 331-344. DOI: 10.1007/s11157-010-9199-2.
Soo PL, Bashir MJK, Wong LP. 2022. Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: Challenges and future perspectives. J Environ Manag 320: 115750. DOI: 10.1016/j.jenvman.2022.115750.
Tchobanoglous GL, Burton F, Stensel DH. 2014. Wastewater Engineering: Treatment and Reuse 4th Edition. Metcalf & Eddy, Inc, New York.
Thomsen TR, Kong Y, Nielsen PH. 2007. Ecophysiology of abundant denitrifying bacteria in activated sludge. FEMS Microbiol Ecol 60 (3): 370-382. DOI: 10.1111/j.1574-6941.2007.00309.x.
Wei ITA, Jamali NS, Ting WHT. 2019. Phytoremediation of palm oil mill effluent (POME) using Eichhornia crassipes. J Appl Sci Process Eng 6 (1): 340-354. DOI: 10.33736/jaspe.1349.2019.
Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 20: 129. DOI: 10.1186/s13059-019-1727-y.
Xiao W, Xu G, Li G. 2021. Effect of nanobubble application on performance and structural characteristics of microbial aggregates. Sci Tot Environ 765: 142725. DOI: 10.1016/j.scitotenv.2020.142725.
Xiao W, Xu G. 2020. Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties. Sci Tot Environ 703: 134976. DOI: 10.1016/j.scitotenv.2019.134976.
Xu Y, Li L, Lou S, Tian J, Sun S, Li X, Li Y. 2022. Effects of nano-aerators on microbial communities and functions in the water, sediment, and shrimp intestine in Litopenaeus vannamei aquaculture ponds. Microorganisms 10: 1302. DOI: 10.3390/microorganisms10071302.
Yip S, Dehcheshmeh MM, McLelland DJ, Boardman WSJ, Saputra S, Ebrahimie E, Weyrich LS, Bird PS, Trott DJ. 2021. Porphyromonas spp., Fusobacterium spp., and Bacteroides spp. dominate microbiota in the course of macropod progressive periodontal disease. Sci Rep 11: 17775. DOI: 10.1038/s41598-021-97057-1.
Zahrim AY, Nasimah A, Hilal N. 2014. Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide. J Water Process Eng 4: 159-165. DOI: 10.1016/j.jwpe.2014.09.005.
Zainuri NZ, Hairom NHH, Sidik DAB, Desa AL, Misdan N, Yusof N, Mohammad AW. 2018. Palm oil mill secondary effluent (POMSE) treatment via photocatalysis process in presence of ZnO-PEG nanoparticles. J Water Process Eng 26: 10-16. DOI: 10.1016/j.jwpe.2018.08.009.
Zhang L, Li S, Zhang S, Cai H, Fang W, Shen Z. 2023. Recovery trajectories of the bacterial community at distances in the receiving river under wastewater treatment plant discharge. J Environ Manag 326: 116622. DOI: 10.1016/j.jenvman.2022.116622.
Zhang Y, Hua Z. Shuang, Lu H, Oehmen A, Guo J. 2019. Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics. Water Res 148: 219-230. DOI: 10.1016/j.watres.2018.10.061.

Most read articles by the same author(s)

1 2 > >>