Exploration of bacteria from Setigi Lake, Gresik District, Indonesia as a candidate for industrial microalgae production

##plugins.themes.bootstrap3.article.main##

SITORESMI PRABANINGTYAS
AGUNG WITJORO
https://orcid.org/0000-0003-1617-6310
ALFIA NUR LAILI
AMALIA SHITA DEVI
CHALIMATUS SA’DIYYAH
MUSHOFATUL FITRIA
ZELA LIA QOMARIA
FATCHUR ROHMAN
https://orcid.org/0000-0002-9270-603X
HERU SURYANTO
https://orcid.org/0000-0001-7037-1868
IDA MAWADAH
https://orcid.org/0009-0002-0339-7309
DITA AYU EKA SAPUTRI
WASIATUS SA’DIYAH
https://orcid.org/0009-0006-3301-8575

Abstract

Abstract. Prabaningtyas S, Witjoro A, Laili AN, Devi AS, Sa’diyyah C, Fitria M, Qomaria ZL, Rohman F, Suryanto H, Mawadah I, Saputri DAE, Sa’diyah W. 2025. Exploration of bacteria from Setigi Lake, Gresik District, Indonesia as a candidate for industrial microalgae production. Biodiversitas 26: 1135-1144. The diversity of microorganisms leads to the utilization of biological resources. The aim of this study was to investigate the community structure of microalgae and identify and assess the microbial community and bacterial potential that were collected from Lake Setigi in Gresik District, East Java, Indonesia. The field sampling was done by collecting water from 0, 50, and 100 cm depths. Microalgae were identified according to the guidebook, while the bacterial genome was isolated for metagenomic analysis. The results revealed varying taxa numbers and density of microalgae in Lake Setigi, such as 54 species at a depth of 0-10 cm (35.63 × 108 cells/mL), 42 species at a depth of 50 cm (6.12 × 108cells/mL); and 24 species at a depth of 100 cm (1.56 × 108 cells/mL). Microalgal diversity was categorized as intermediate, well-distributed, or predominant. The three most abundant bacterial phyla were Proteobacteria (56%), Bacteroidetes (16%), and Actinobacteria (13%). The potential functions of the selected bacterial isolates and their species were determined based on the similarity in 16S rRNA gene phylogenetic reconstruction. Isolates IAA17 (Delftia sp.), P15 (Pseudomonas libanensis), S14 (Bacillus subtilis), and SG5 (Lysinibacillus sp.) produced IAA, phosphate solubilization, vitamin B12, and ammonium, respectively, as a result of nitrogen-fixing activity. These abilities of bacteria underline their potential roles in biogeochemical cycling and ecosystem processes.

##plugins.themes.bootstrap3.article.details##

References
Aguirre-Monroy AM, Santana-Martínez JC, Dussán J. 2019. Lysinibacillus sphaericus as a nutrient enhancer during fire-impacted soil replantation. Appl Environ Soil Sci 2019 (1): 3075153. DOI: 10.1155/2019/3075153.
Ahmad T, Gupta G, Sharma A, Kaur B, El-Sheikh MA, Alyemeni MN. 2021. Metagenomic analysis exploring taxonomic and functional diversity of bacterial communities of a Himalayan urban freshwater lake. PLoS One 16 (3): e0248116. DOI: 10.1371/journal.pone.0248116.
Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8: 971. DOI: 10.3389/fmicb.2017.00971.
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U, Lal R, Toteja R. 2023. DNA barcoding, an effective tool for species identification: A review. Mol Biol Rep 50: 761-775. DOI: 10.1007/s11033-022-08015-7.
Asmoro AY, Aziz M. 2020. Potensi pengembangan Setigi sebagai destinasi wisata. Jurnal Manajemen Kewirausahaan 5 (3): 228-253. DOI: 10.32503/jmk.v5i3.1136. [Indonesian]
Balabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. 2021. Microbial and genetic resources for cobalamin (vitamin B12) biosynthesis: From ecosystems to industrial biotechnology. Intl J Mol Sci 22 (9): 4522. DOI: 10.3390/ijms22094522.
Bellinger EG, Sigee DC. 2010. Freshwater Algae: Identification and Use as Bioindicators. John Wiley & Sons, Ltd, Hoboken, New Jersey.
Bromke MA, Hesse H. 2015. Phylogenetic analysis of methionine synthesis genes from Thalassiosira pseudonana. SpringerPlus 4: 391. DOI: 10.1186/s40064-015-1163-8.
Chen L, Hu BX, Dai H, Zhang X, Xia C-A, Zhang J. 2019. Characterizing microbial diversity and community composition of groundwater in a salt-freshwater transition zone. Sci Total Environ 678: 574-584. DOI: 10.1016/j.scitotenv.2019.05.017.
Dong H, Liu W, Zhang H, Zheng X, Duan H, Zhou L, Xu T, Ruan R. 2022. Improvement of phosphate solubilizing bacteria Paenibacillus xylanexedens on the growth of Chlorella pyrenoidosa and wastewater treatment in attached cultivation. Chemosphere 306: 135604. DOI: 10.1016/j.chemosphere.2022.135604.
Feng C, Jia J, Wang C, Han M, Dong C, Huo B, Li D, Liu X. 2019. Phytoplankton and bacterial community structure in two Chinese lakes of different trophic status. Microorganisms 7 (12): 621. DOI: 10.3390/microorganisms7120621.
Fettah N, Derakhshandeh M, Tezcan Un U, Mahmoudi L. 2022. Effect of light on growth of green microalgae Scenedesmus quadricauda: Influence of light intensity, light wavelength and photoperiods. Intl J Energy Environ Eng 13: 703-712. DOI: 10.1007/s40095-021-00456-3.
Gusmiaty, Restu AM, Payangan RY. 2019. Production of IAA (Indole Acetic Acid) of the rhizosphere fungus in the Suren community forest stand. IOP Conf Ser: Earth Environ Sci 343: 012058. DOI: 10.1088/1755-1315/343/1/012058.
Han JW, Oh M, Choi GJ, Kim H. 2017. Genome sequence of Delftia acidovorans HK171, a nematicidal bacterium isolated from tomato roots. Genome Announc 5: 10.1128/genomea.01746-16. DOI: 10.1128/genomea.01746-16.
Hilal M. 2020. Struktur komunitas fitoplankton dan zooplankton berdasarkan musim di Kawasan Danau Biru Cigaru Cisoka Kabupaten Tangerang [Thesis]. Universitas Islam Negeri Syarif Hidayatullah, Jakarta. [Indonesian]
Imamuddin H, Dewi TK, Antonius S. 2015. Isolation and screening of rhizobacteria from soil in Ngawi, East Java, as candidates of agent for liquid organic fertilizer production. Nusantara Biosci 7 (2): 101-105. DOI: 10.13057/nusbiosci/n070208.
Jusoh M, Loh SH, Chuah TS, Aziz A, San Cha T. 2015. Indole-3-Acetic Acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry 111: 65-71. DOI: 10.1016/j.phytochem.2014.12.022.
Khalifa AYZ, AlMalki M. 2019. Polyphasic characterization of Delftia acidovorans ESM-1, a facultative methylotrophic bacterium isolated from rhizosphere of Eruca sativa. Saudi J Biol Sci 26 (6): 1262-1267. DOI: 10.1016/j.sjbs.2018.05.015.
Kouas S, Djedidi S, Debez IBS, Sbissi I, Alyami NM, Hirsch AM. 2024. Halotolerant phosphate solubilizing bacteria isolated from arid area in Tunisia improve P status and photosynthetic activity of cultivated barley under P shortage. Heliyon 10 (19): e38653. DOI: 10.1016/j.heliyon.2024.e38653.
Kumar P, Aeron A, Shaw N, Singh A, Bajpai VK, Pant S, Dubey RC. 2020. Seed bio-priming with tri-species consortia of Phosphate Solubilizing Rhizobacteria (PSR) and its effect on plant growth promotion. Heliyon 6: e05701. DOI: 10.1016/j.heliyon.2020.e05701.
Lee S-Y, Eom Y-B. 2016. Analysis of microbial composition associated with freshwater and seawater. Biomed Sci Lett 22 (4): 150-159. DOI: 10.15616/bsl.2016.22.4.150.
Li H, Cai YY, Song CL, Cao Z, Li J, Qin ZH, Zhang SX, Li JF, Cao XY, Zhou YY. 2024. Comparison of phosphorus migration and transformation characteristics in sediments of lakes within the Yangtze River basin and reservoirs on the Wujiang River. J Soils Sediments 24: 991-1001. DOI: 10.1007/s11368-023-03698-2.
Liu Z, Li YC, Zhang S, Fu Y, Fan X, Patel JS, Zhang M. 2015. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Appl Soil Ecol 96: 217-224. DOI: 10.1016/j.apsoil.2015.08.003.
Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H. 2019. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379: 120813. DOI: 10.1016/j.jhazmat.2019.120813.
Mahmudi M, Arsad S, Lusiana ED, Musa M, Fitrianesia F, Ramadhan SF, Arif AR, Savitri FR, Dewinta AA, Ongkosongo AD. 2023. Microalgae diversity in varying habitat characteristics in Pasuruan and Sidoarjo coastal areas, East Java, Indonesia. Biodiversitas 24 (8): 4418-4426. DOI: 10.13057/biodiv/d240823.
Merlo C, Reyna L, Abril A, Amé MV, Genti-Raimondi S. 2014. Environmental factors associated with heterotrophic nitrogen-fixing bacteria in water, sediment, and riparian soil of Suquía River. Limnologica 48: 71-79. DOI: 10.1016/j.limno.2014.06.004.
Meza B, de-Bashan LE, Bashan Y. 2015. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol 166 (2): 72-83. DOI: 10.1016/J.Resmic.2014.12.010.
Nafisah W, Prabaningtyas S, Witjoro A, Saptawati RT, Rodiansyah A. 2022. Exploration non-symbiotic nitrogen-fixing bacteria from several lakes in East Java, Indonesia. Biodiversitas 23 (4): 1752-1758. DOI: 10.13057/biodiv/d230405.
Palacios OA, Lopez BR, Bashan Y, de-Bashan LE. 2019. Early changes in nutritional conditions affect formation of synthetic mutualism between Chlorella sorokiniana and the bacterium Azospirillum brasilense. Microbial Ecol 77: 980-992. DOI: 10.1007/s00248-018-1282-1.
Passera A, Rossato M, Oliver JS et al. 2021. Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiol Res 244: 126665. DOI: 10.1016/j.micres.2020.126665.
Prabaningtyas S, Ardyati T, Suharjono, Retnaningdyah C. 2021. Exploration of vitamin B12-producing bacteria from Indonesia Eutrophic Lake: A new strategy to improve microalgae biomass production. Biodiversitas 22 (10): 4538-4544. DOI: 10.13057/biodiv/d221047.
Putrawiyanta IP. 2020. Pemanfaatan lubang bekas tambang sebagai danau pascatambang di PT Kasongan Bumi Kencana Kabupaten Katingan Provinsi Kalimantan Tengah. Promine 8 (1): 8-13. DOI: 10.33019/promine.v8i1.1801. [Indonesian]
Ramadhani SI, Prabaningtyas S, Witjoro A, Saptawati RT, Rodiansyah A. 2020. Quantitative assay of indole acetic acid-producing bacteria isolated from several lakes in East Java, Indonesia. Biodiversitas 21 (11): 5448-5454. DOI: 10.13057/biodiv/d211153.
Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S. 2016. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 34 (1): 14-29. DOI: 10.1016/j.biotechadv.2015.12.003.
Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. 2017. Proteobacteria: A common factor in human diseases. BioMed Res Intl 2017 (1): 9351507. DOI: 10.1155/2017/9351507.
Russo DA, Couto N, Beckerman AP, Pandhal J. 2016. A metaproteomic analysis of the response of a freshwater microbial community under nutrient enrichment. Front Microbiol 7: 1172. DOI: 10.3389/fmicb.2016.01172.
Samudra SR, Soeprobowati TR, Izzati M. 2013. Komposisi, kemelimpahan dan keanekaragaman fitoplankton Danau Rawa Pening Kabupaten Semarang. Bioma 15: 6-13. DOI: 10.14710/bioma.15.1.6-13. [Indonesian]
Sembiring M, Sabrina T. 2021. Diversity of non-symbiotic nitrogen-fixing bacteria and their potential in andisols affected by the eruption of Mount Sinabung, North Sumatra, Indonesia. Biodiversitas 22 (8): 3539-3544. DOI: 10.13057/biodiv/d220854.
Shao K, Yao X, Wu Z, Jiang X, Hu Y, Tang X, Xu Q, Gao G. 2021. The bacterial community composition and its environmental drivers in the rivers around eutrophic Chaohu Lake, China. BMC microbiol 21: 179. DOI: 10.1186/s12866-021-02252-9.
Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, Taga ME. 2019. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J 13: 789-804. DOI: 10.1038/S41396-018-0304-9.
Sukmawati S, Dewi NK, Yunita M. 2021. The measurement of indole acetic acid from rhizosphere bacteria. Jurnal Pendidikan Biologi 6 (1): 108-115. DOI: 10.31932/jpbio.v6i1.872.
Sun Y, Li X, Liu J, Yao Q, Jin J, Liu X, Wang G. 2019. Comparative analysis of bacterial community compositions between sediment and water in different types of wetlands of northeast China. J Soils Sediments 19: 3083-3097. DOI: 10.1007/s11368-019-02301-x.
Torres AC, Vannini V, Bonacina J, Font G, Saavedra L, Taranto MP. 2016. Cobalamin production by Lactobacillus coryniformis: Biochemical identification of the synthetized corrinoid and genomic analysis of the biosynthetic cluster. BMC microbiol 16: 240. DOI: 10.1186/s12866-016-0854-9.
Wang H, Zhang L, Tian C, Fan S, Zheng D, Song Y, Gao P, Li D. 2024. Effects of nitrogen supply on hydrogen-oxidizing bacterial enrichment to produce microbial protein: Comparing nitrogen fixation and ammonium assimilation. Bioresour Technol 394: 130199. DOI: 10.1016/j.biortech.2023.130199.
Widawati S, Muharam A. 2012. Uji laboratorium Azospirillum sp. yang diisolasi dari beberapa ekosistem. Jurnal Hortikultura 22 (3): 258-267. DOI: 10.21082/jhort.v22n3.2012.p258-267. [Indonesian]
Wo?niak M, Ga??zka A, Ty?kiewicz R, Jaroszuk-?cise? J. 2019. Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the Biolog GEN III MicroPlateTM test. Intl J Mol Sci 20 (21): 5283. DOI: 10.3390/ijms20215283.
Xie J, Gao L, Jiang X. 2024. Effects of phosphate-solubilizing bacteria on phosphorus release from coastal sediments and the growth of ‘Green tide’ Chaetomorpha linum. Estuar Coasts 48: 14. DOI: 10.1007/s12237-024-01456-2.
Yadav AN, Yadav N, Kour D, Kumar A, Yadav K, Kumar, Rastegari AA, Sachan SG,Singh B, Chaucan VS, Saxena AK. 2019. Bacterial community composition in lakes. In: Bandh SA, Shafi S, Shameem N (eds). Freshwater Microbiology: Perspectives of Bacterial Dynamics in Lake Ecosystems. Academic Press, Cambridge, Massachusetts. DOI: 10.1016/B978-0-12-817495-1.00001-3.
Yang Y, Li M, Li H, Li X-Y, Lin J-G, Denecke M, Gu J-D. 2020. Specific and effective detection of anammox bacteria using PCR primers targeting the 16S rRNA gene and functional genes. Sci Total Environ 734: 139387. DOI: 10.1016/j.scitotenv.2020.139387.
Zhu C, Zhang J, Nawaz MZ, Mahboob S, Al-Ghanim KA, Khan IA, Lu Z, Chen T. 2019. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu. Sci Total Environ 669: 29-40. DOI: 10.1016/j.scitotenv.2019.03.087.
Zulfarina Z, Rusmana I, Mubarik NR, Santosa DA. 2017. The abundance of nitrogen fixing, nitrifying, denitrifying and ammonifying bacteria in the soil of tropical rainforests and oil Palm plantations in Jambi. Makara J Sci 21 (4): 187-194. DOI: 10.7454/mss.v21i4.8841.

Most read articles by the same author(s)