Current distribution and habitat suitability for the present and future scenarios of Cyrtodactylus angularis in Thailand

##plugins.themes.bootstrap3.article.main##

NUTTAPONG KHAJITMATHEE
NITHINA KAEWTONGKUM
AINGORN CHAIYES
WARONG SUKSAVATE
PRATEEP DUENGKAE
PONGPITAK SRIBANDIT
RATCHATA PHOCHAYAVANICH
CHANTIP CHUAYNKERN
YODCHAIY CHUAYNKERN

Abstract

Abstract. Khajitmathee N, Kaewtongkum N, Chaiyes A, Suksavate W, Duengkae P, Sribandit P, Phochayavanich R, Chuaynkern C, Chuaynkern Y. 2025. Current distribution and habitat suitability for the present and future scenarios of Cyrtodactylus angularis in Thailand. Biodiversitas 26: 1039-1050. The genus Cyrtodactylus, with approximately 381 species, is among the most speciose in the family Gekkonidae. Cyrtodactylus angularis, an endemic species of Thailand, was assessed for habitat suitability using Ecological Niche Modeling (ENM). This study evaluates the species' potential risks under current and future environmental conditions. Species identification was based on photographic evidence and morphological traits. The MaxEnt model was employed to estimate the species' potential distribution. The analysis identified dry evergreen forests as the primary environmental variable influencing habitat suitability, showing a strong positive correlation with the species. The current habitat suitability area for C. angularis is estimated at 5,879.51 km². Under future climate scenarios, habitat suitability areas are projected to decrease significantly. By 2050, the habitat suitability areas are expected to shrink by 372.00 km² (-6.33%) under SSP2-4.5 and 2,121.69 km² (-36.09%) under SSP5-8.5. 2070 further reductions are anticipated, with declines of 2,120.05 km² (-36.06%) under SSP2-4.5 and 5,309.17 km² (-90.30%) under SSP5-8.5. These projections highlight the substantial threat climate change poses to the species' habitat. The Phu Khiao-Nam Nao and Dong Phaya Yen-Khao Yai Forest Complexes are identified as key potential preserves for C. angularis. We recommend prioritizing these areas for conservation efforts to protect the species from future environmental changes. Additionally, intensive surveys across the species' full range are essential to enhance our understanding of its ecological niche. Expanding occurrence data from under-surveyed regions will improve habitat suitability models and help identify critical microhabitats, supporting more effective conservation planning.

##plugins.themes.bootstrap3.article.details##

References
Ahmadi M, Hemami MR, Kaboli M, Malekian M, Zimmermann NE. 2019. Extinction risks of a Mediterranean neo-endemism complex of mountain vipers triggered by climate change. Sci Rep 9: 6332. DOI: 10.1038/s41598-019-42792-9.
Anderson RP, Gonzalez JI. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol Model 222: 2796-2811. DOI: 10.1016/j.ecolmodel.2011.04.011.
Anderson RP, Lew D, Peterson AT. 2003. Evaluating predictive models of species distributions: Criteria for selecting optimal models. Ecol Model 162: 211-232. DOI: 10.1016/S0304-3800(02)00349-6.
Badia?Boher JA, Hernández?Matías A, Viada C, Real J. 2022. Raptor reintroductions: Cost?effective alternatives to captive breeding. Anim Conserv 25: 170-181. DOI: 10.1111/acv.12729.
Brunetti M, Magoga G, Iannella M, Biondi M, Montagna M. 2019. Phylogeography and species distribution modelling of Cryptocephalus barii (Coleoptera: Chrysomelidae): Is this alpine endemic species close to extinction? ZooKeys 856: 3-25. DOI: 10.3897/zookeys.856.32462.
Case MJ, Johnson BG, Bartowitz KJ, Hudiburg TW. 2021. Forests of the future: Climate change impacts and implications for carbon storage in the Pacific Northwest, USA. For Ecol Manag 482: 118886. DOI: 10.1016/j.foreco.2020.118886.
Chan-ard T, Nabhitabhata J, Parr JW. 2015. A Field Guide to the Reptiles of Thailand. Oxford University Press, New York.
Chen H, Sun J, Lin W, Xu H. 2020. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci Bull 65: 1415-1418. DOI: 10.1016/j.scib.2020.05.015.
Chuaynkern C, Duengkae P. 2014. Decline of amphibians in Thailand. In: Heatwole H, Das I (eds). Conservation Biology of Amphibians of Asia. Status of Conservation and Decline of Amphibians: Eastern Hemisphere. National History Publicaitons, Borneo.
Chuaynkern Y, Nurngsomsri P, Chuaynkern C, Duengkae P, Karaphan S. 2018. Cyrtodactylus elok Dring, 1979 (Sauria, Gekkonidae): A first country record for Thailand. Biodiversitas 19: 2111-2117. DOI: 10.13057/biodiv/d190617.
Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. 2019. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7: e6281. DOI: 10.7717/peerj.6281.
de Castro Pena JC, Goulart F, Fernandes GW. 2017. Impacts of mining activities on the potential geographic distribution of eastern Brazil mountaintop endemic species. Perspect Ecol Conserv 15: 172-178. DOI: 10.1016/j.pecon.2017.07.00.
Farquharson KA, Hogg CJ, Grueber CE. 2018. A meta-analysis of birth-origin effects on reproduction in diverse captive environments. Nat Commun 9: 1055. DOI: 10.1038/s41467-018-03500-9.
Ferraro PJ, Pressey RL. 2015. Measuring the difference made by conservation initiatives: Protected areas and their environmental and social impacts. Phil Trans R Soc B: Biol Sci 370: 20140270. DOI: 10.1098/rstb.2014.0270.
Fraser DJ. 2008. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol Appl 1: 535-586. DOI: 10.1111/j.1752-4571.2008.00036.x.
Grismer LL, Rujirawan A, Yodthong S, Stuart BL, Duc ML, Le DT, Chuaynkern Y, Wood JP, Aowphol A. 2022. The taxonomy and phylogeny of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) with emphasis on C. interdigitalis and C. ngati. Vertebr Zool 72: 245-269. DOI: 10.3897/vz.72.e80615.
Grismer LL, Wood PL, Poyarkov NA. 2021b. Phylogenetic partitioning of the third-largest vertebrate genus in the world, Cyrtodactylus Gray, 1827 (Reptilia; Squamata; Gekkonidae) and its relevance to taxonomy and conservation. Vertebr Zool 71: 101-154. DOI: 10.3897/VERTEBRATE-ZOOLOGY.71.E59307.
Grismer LL, Wood PLJ, Poyarkov NA. 2021a. Karstic landscapes are foci of species diversity in the world's third-largest vertebrate genus Cyrtodactylus Gray, 1827 (Reptilia: Squamata; Gekkonidae). Diversity 13 (5): 183. DOI: 10.3390/d13050183.
Gunawan G, Rizki MI, Anafarida O, Mahmudah N. 2021. Modeling potential distribution of Baccaurea macrocarpa in South Kalimantan, Indonesia. Biodiversitas 22 (8): 3230-3236. DOI: 10.13057/biodiv/d220816.
Hemming V, Camaclang AE, Adams MS. 2022. An introduction to decision science for conservation. Conserv Biol 36: e13868. DOI: 10.1111/cobi.13868.
Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR. 2021. Climate change effects on animal ecology: Butterflies and moths as a case study. Biol Rev 96: 2113-2126. DOI: 10.1111/brv.12746.
Kraus D, Enns A, Hebb A, Murphy S, Drake DAR, Bennett B. 2023. Prioritizing nationally endemic species for conservation. Conserv Sci Pract 5: e12845. DOI: 10.1111/csp2.12845.
Kurniawan R, Managi S. 2018. Measuring long-term sustainability with shared socioeconomic pathways using an inclusive wealth framework. Sustain Dev 26 :1-10. DOI: 10.1002/sd.1722.
Lapwong Y, Dejtaradol A, Webb JK. 2021. Shifts in thermal tolerance of the invasive Asian house gecko (Hemidactylus frenatus) across native and introduced ranges. Biol Invasions 23: 989-996. DOI: 10.1007/s10530-020-02441-z.
Legge S, Rumpff L, Woinarski JC. 2022. The conservation impacts of ecological disturbance: Time?bound estimates of population loss and recovery for fauna affected by the 2019-2020 Australian megafires. Glob Ecol Biogeogr 31: 2085-2104. DOI: 10.1111/geb.13473.
Mitchell WF, Boulton RL, Sunnucks P, Clarke RH. 2022. Are we adequately assessing the demographic impacts of harvesting for wild?sourced conservation translocations? Conserv Sci Pract 4: e569. DOI: 10.1111/csp2.569.
Novak BJ, Phelan R. Weber M. 2021. US conservation translocations: Over a century of intended consequences. Conserv Sci Pract 3: e394. DOI: 10.1111/csp2.394.
Nurngsomsri P, Chuaynkern C, Duengkae P, Sanguansombat W, Grismer LL, Chuaynkern Y. 2019. Cyrtodactylus leegrismeri Chan and Norhayati, 2010 (Sauria: Gekkonidae): A first country record for Thailand. Songklanakarin J Sci Technol 41: 1319-1327. DOI: 10.14456/sjst-psu.2019.167.
Nurngsomsri P, Chuaynkern Y, Chuaynkern C. 2014. Variation and recent distribution of Cyrtodactylus interdigitalis Ulber, 1993 from Thailand. In: Proceedings of the 40th Congress on Science and Technology of Thailand (STT40). Khon Kaen University, Khon Kaen, 2 December 2014. [Thailan]
Nurngsomsri P. 2016. Taxonomic Study of the Bent-toed geckos Cyrtodactylus Gray, 1827 in Thailand. [Thesis]. Khon Kaen University, Khon Kaen.
Oliver PM, Richards SJ, Sistrom M. 2012. Phylogeny and systematics of Melanesia’s most diverse gecko lineage (Cyrtodactylus, Gekkonidae, Squamata). Zool Scr 41: 437-454. DOI: 10.1111/j.1463-6409.2012.00545.x.
Owens HL, Campbell LP, Dornak L. 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263: 10-18. DOI: 10.1016/j.ecolmodel.2013.04.011.
Pearman PB, Guisan A, Broennimann O, Randin CF. 2008. Niche dynamics in space and time. Trend Ecol Evol 23: 149-158. DOI: 10.1016/j.tree.2007.11.005.
Peterson AT, Cobos ME, Jiménez-García D. 2018. Major challenges for correlational ecological niche model projections to future climate conditions. Ann NY Acad Sci 1429: 66-77. DOI: 10.1111/nyas.13873.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026.
Phommexay P, Chaiyes A, Duengkae P, Chuaynkern C, Chuaynkern Y. 2024a. Current and suitable habitat of the critically endangered northern white-cheeked gibbon (Nomascus leucogenys) in Lao PDR. Ecol Montenegrina 75: 103-118. DOI: 10.37828/em.2024.75.10.
Phommexay P, Chaiyes A, Duengkae P, Chuaynkern C, Chuaynkern Y. 2024b. Estimation of population and threats of the northern white-cheeked gibbon (Nomascus leucogenys) in Phou Khao Khouay National Biodiversity Conservation Area, Lao PDR. Agric Nat Resour 58: 453-462. DOI: 10.34044/j.anres.2024.58.4.05.
Prakash S, Verma AK. 2022. Anthropogenic activities and biodiversity threats. Intl J Biol Innov 4 (1): 94-103. DOI: 10.46505/IJBI.2022.4110.
Prayoon U, Suksavate W, Chaiyes A. 2021. Past, present and future habitat suitable for gaur (Bos gaurus) in Thailand. Agric Nat Resour 55: 743-756. DOI: 10.34044/j.anres.2021.55.5.05.
Qazi AW, Saqib Z, Zaman-ul-Haq M. 2022. Trends in species distribution modelling in the context of rare and endemic plants: A systematic review. Ecol Process 11: 1-11. DOI: 10.1186/s13717-022-00384-y.
Raghavan RK, Peterson AT, Cobos ME, Ganta R, Foley D. 2019. Current and future distribution of the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. Plos One 14: e0209082. DOI: 10.1371/journal.pone.0209082.
Rahbek C. 1993. Captive breeding-a useful tool in the preservation of biodiversity? Biodiv Conserv 2: 426-437. DOI: 10.1007/BF00114044.
Schell CJ, Stanton LA, Young JK. 2020. The evolutionary consequences of human-wildlife conflict in cities. Evol Appl 14: 178-197. DOI: 10.1111/eva.13131.
Shrestha N. 2020. Detecting multicollinearity in regression analysis. Am J Appl Math Stat 8 (2): 39-42. DOI: 10.12691/ajams-8-2-1.
Sillero N, Barbosa AM. 2021. Common mistakes in ecological niche models. Intl J Geogr Inf Sci 35: 213-226. DOI: 10.1080/13658816.2020.1798968.
Simkin RD, Seto KC, McDonald RI, Jetz W. 2022. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc Natl Acad Sci USA 119: e2117297119. DOI: 10.1073/pnas.2117297119.
Smith MA. 1921. New or little-known reptiles and batrachians from southern Annam (Indochina). Proc Zool Soc Lond 1921: 423-440. DOI: 10.1111/j.1096-3642.1921.tb03271.x.
Smith MA. 1935. The Fauna of British India, Including Ceylon and Burma. Taylor and Francis, London.
Stigall AL. 2012. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22: 4-9. DOI: 10.1130/g128a.1.
Sumontha M, Cota M. 2018. Cyrtodactylus angularis. www.iucnredlist.org/species/54586549/54586566.
Sumontha M, Panitvong N, Kunya K. 2024. Two new cave-dwelling species of bent-toed geckos from Saraburi and Loei provinces, Thailand (Squamata: Gekkonidae: Cyrtodactylus). Zootaxa 5512 (2): 272-294. DOI: 10.11646/zootaxa.5512.2.9.
Taylor EH. 1963. The lizards of Thailand. Univ Kansas Sci Bull 44: 687-1077.
Taylor KE, Stouffer RJ, Meehl GA. 2012. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93: 485-498. DOI: 10.1175/BAMS-D-11-00094.1.
Tran DV, Hoang TT, Nguyen TH. 2023. Current and future suitable habitats of a range-restricted species group (Cyrtodactylus chauquangensis) in Vietnam. Raffles Bull Zool 71: 224-236. DOI: 10.26107/RBZ-2023-0017.
Uetz P, Freed P, Aguilar R, Reyes F, Kudera J, Hošek J. 2025. The Reptile Database. www.reptile-database.org.
Ulber T, Grossmann W. 1991. Ein weiterer neuer Gecko aus Zentral-Thailand: Cyrtodactylus papilionoides sp. nov. (Reptilia: Sauria: Gekkonidae). Sauria 13: 13-22.
Warret RC, Angin B, Besnard A. 2021. Favoring recruitment as a conservation strategy to improve the resilience of long?lived reptile populations: Insights from a population viability analysis. Ecol Evol 11: 13068-13080. DOI: 10.1002/ece3.8021.
Wei BO, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conserv 16: e00477. DOI: 10.1016/j.gecco.2018.e00477.
Wild Animal Conservation and Protection Act. 2019. Wild Animal Conservation and Protected Act, B.E. 2562. R Thai Gov Gaz 136: 104-144.
Worthington-Wilmer J, Couper P. 2016. Phylogeography of north eastern Australia’s Cyrtodactylus radiation: A habitat switch highlights adaptive capacity at a generic level. Aust J Zool 63: 398-410. DOI: 10.1071/ZO15051.
Yang S, Cui X. 2019. Building regional sustainable development scenarios with the SSP framework. Sustainability 11: 5712. DOI: 10.3390/su11205712.
Zangiabadi S, Zaremaivan H, Brotons L, Mostafavi H, Ranjbar H. 2021. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. Plos One 16: e0256918. DOI: 10.1371/journal.pone.0256918.

Most read articles by the same author(s)

1 2 > >>