Evaluation of SSR and important agronomical characters of promising mutant lines of soybean
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Asadi, Dewi N, Nugroho K, Terryana RT, Mastur, Lestari P. 2020. Evaluation of SSR and important agronomical characters of promising mutant lines of soybean. Biodiversitas 21: 299-310. Improved soybean (Glycine max (L.) Merr.) varieties resistant to major pest or disease, and in accordance with consumer preferences are important in breeding programs to raise their productivity. Identification of superior promising mutant lines of soybean before releasing them needs multiple environment trials complemented with molecular assay. This study aimed to assess morpho-agronomical and molecular characters using SSR markers of promising mutant lines of soybean (Glycine max (L.) Merr.). A total of 14 SSR markers were used to evaluate 20 mutant lines along with their parental lines and check varieties, and eight different locations were chosen to field evaluation of 11 selected lines induced by gamma-ray. Values of Polymorphism Information Content, allele number, and gene diversity index were high, indicating the great genetic diversity among these mutant lines, and far distant from their parental lines. Phylogenetic tree also supported the distinguishable among gamma ray-induced mutant lines compared to the parental lines. The significant interaction between promising line and environment showed their high adaptability and stable yield in various environments. Biosoy-8 (2.713 ton/ha) and Biosoy-11 (2.631 ton/ha) revealing the high yields lines supported with the molecular information could be potential to be released as new varieties and can direct their efficient utilization for field application or further improvement scheme.
##plugins.themes.bootstrap3.article.details##
Ahloowalia B, Maluszynski M, Nichterlein K. 2004. Global Impact of mutation derived varieties. Euphytica 135: 187-204. https://doi.org/10.1023/b:euph.0000014914.85465.4f
Akandeh M, Soufbaf M, Kocheili F, Rasekh A. 2017. Gamma irradiation on canola seeds affects herbivore-plant and host parasitoid interactions. Neotrop. Entomol 46: 256-263. https://doi.org/10.1007/s13744-016-0460-4
Arefrad M, Nematzadeh G, Jelodar NB, Kazemitabar SK. 2012. Improvement of qualitative and quantitative traits in soybean (Glycine max (L.) Merrill) through gamma irradiation. Plant Molecular Breeding 1: 10-15.
Asadi, Soemartono, Woerjono M, Harjosudarmo J. 2004. Keefektifan metode seleksi modifikasi bulk dan pedigri untuk karakter agronomi, ketahanan terhadap virus kerdil (SSV) galur-galur F7 kedelai. Zuriat 5: 64-76.
Baye TM, Abebe T, Wilke RA. 2011. Genotype-environment interactions and their translational implications. Personalized Medicine 8: 59-70. https://doi.org/10.2217/pme.10.75
Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J. 2003. Large-scale identification of single-feature polymorphisms in complex genomes. Genome Research 13: 513-523. https://doi.org/10.1101/gr.541303
Carsono N. 2008. Peran pemuliaan tanaman dalam meningatkan produksi pertanian di Indonesia. Seminar on Agricultural Sciences. Available online with updates at http://pustaka.unpad.ac.id/wp-ontent/uploads/2009/08/peran_pemuliaan_tanaman.pdf [26 Februari 2014].
Choudhary N, Ahuja U, Chawla V, Jain RK, Kumari P, Batan KR. 2011. Morphological and molecular variability in weedy rices of Haryana. Asian Journal of Agricultural Research 5: 250-259.
Crossa J. 2012. From genotype×environment interaction to gene×environment interaction. Current Genomics 13: 225-44. https://doi.org/10.2174/138920212800543066
Dhanavel D, Gnanamurthy S, Girija M. 2012. Effect of gamma rays on induced chromosomal variation in cowpea Vigna unguiculata (L) Walp. International Journal of Current Science, special issue, 245-250. https://doi.org/10.18052/www.scipress.com/ilns.22.33
Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Eberhart SA, Russel WA. 1966. Stability parameters for comparing varieties. Crop Science 6: 36-40. https://doi.org/10.2135/cropsci1966.0011183x000600010011x
Gauch HG, Piepho HP, Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science 48: 866-889. https://doi.org/10.2135/cropsci2007.09.0513
Girija M, Dhanavel D, Gnanamurthy S. 2013. Gamma rays and EMS induced flower color and seed mutants in cowpea (Vigna unguiculata L. Walp). Adv. Appl. Sci. Res, 4, 134-139.
Gobinath P, Pavadai P. 2015. Effect of gamma rays on morphology, growth, yield and biochemical analysis in soybean (Glycine max (L.) Merr.). World Scientific News 23: 1-12.
Gupta PK. 1996. Mutation breeding in mungbean. In AN Asthana and DH Kim (Eds). Recent Advances in Mungbean Research pp: 124-136.
Hamzekhanlu MY, Darbandi AI, Beiranvand NP, Hallajian MT, Majdabadi A. 2011. Phenotypic and molecular analysis of M7 generation of soybean mutant lines through random amplified polymorphic DNA (RAPD) marker and some morphological traits. African Journal of Agricultural Research 6: 1779-1785. https://doi.org/10.5897/AJAR10.1109
Hanafiah DS, Trikoesoemaningtyas, Sudirman Y, Desta W. 2010. Induced mutations by gamma ray irradiation to Argomulyo soybean. Biosciences 2: 121-125. https://doi.org/10.13057/nusbiosci/n020303
Herrera G, Dunia PD, Iris PA, Gelis TN, Alejandro P, Cesar PM, Joe MT. 2008. Assessment of genetic diversity in Venezuelan rice cultivars using simple sequence repeats markers. Biotechnology 11: 5-7. https://doi.org/10.2225/vol11-issue5-fulltext-6
Karimizadeh R, Mohammadi M, Sabaghni N, Mahmoodi AA, Roustami B, Seyyedi F, Akbari F. 2013. GGE biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition. Notulae Scientia Biologicae 5: 256-262. https://doi.org/10.15835/nsb529067
Kim JH, Baek MH, Chung BY, Wi SG, Kim JS. 2004. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. Plant Biology 47: 314-321. https://doi.org/10.1007/bf03030546
Lenis JM, Gillman JD, Lee JD, Shannon SG, Bilyeu KD. 2010. Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theoretical and Applied Genetics 120: 1139-1149. https://doi.org/10.1007/s00122-009-1241-9
Lin CS, Binns MR. 1988. A method for analyzing cultivar×location×year experiments: a new stability parameter. Theoretical and Applied Genetics 76: 425- 430. https://doi.org/10.1007/bf00265344
Marcu D, Grigore D, Constantin C, Victoria C. 2013. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Biological Physics 39: 625-634. https://doi.org/10.1007/s10867-013-9322-z
Malek MA, Rafii MY, Afroz MSS, Nath UK, Mondal MMA. 2014. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. Scientific World 14. http://dx.doi.org/10.1155/2014/968796
Meliala JHS, Basuki N, Sugianto A. 2016. Pengaruh iradiasi sinar gamma terhadap perubahan fenotipik tanaman padi gogo (Oryza sativa L.). Produksi Tanaman 4: 585-594.
Muduli KC, Misra RC. 2007. Efficacy of mutagenic treatments in producing useful mutants in finger millet (Eleusine coracana) Gaertn. Indian Journal of Genetics and Plant Breeding 67: 232-237.
Nath D, Dasgupta T. 2013. Genotype×environment interaction and stability analysis in mungbean. IOASR-JAVS 5: 62-70. https://doi.org/10.9790/2380-0516270
Oladose Y, Rafi MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and Biotechnological Equipment 30: 1-16. https://doi.org/10.1080/13102818.2015.1087333
Pavadai P, Girija M, Dhanavel D. 2010. Effect of gamma rays on some yield parameters and protein content of soybean in M2, M3 and M4 generations. Experimental Sciences 1: 8-11.
Pusat Data dan Informasi. 2015. Outlook Komoditas Pertanian Tanaman Pangan, Kedelai. Available online with updates at http://epublikasi.setjen.pertanian.go.id/arsip-outlook/81-outlook-tanaman-pangan/342-outlook-kedelai-2015
Rasyad A, Idwar. 2010. Interaksi genetik×lingkungan dan stabilitas komponen hasil berbagai genotipe kedelai di Provinsi Riau. Agronomi Indonesia 38: 25-29.
Rodrigues JCV, Kondidie DB, Estevez-Jensen C, Kitajima, EW, Huckaba RM, Foster JE. 2014. Infection in soybean and on multiple host plants in Puerto Rico by an isolate of cowpea mild mottle virus. Virus Reviews Research 19: 1-4. https://doi.org/10.17525/vrr.v19i1.101
Sangsiri C, Worawit S, Peerasak S. 2005. Gamma radiation induced mutations in mungbean. Science Asia 31: 251-255. https://doi.org/10.2306/scienceasia1513-1874.2005.31.251
Shin JM, Kim BK, Seo SG, Jeon SB, Kim JS, Jun BK, Kang SY, Lee JS, Chung MN, Kim SH. 2011. Mutation breeding of sweet potato by gamma-ray radiation. African Journal of Agricultural Research 6: 1447-1454.
Soeranto H. 2011. Plant breeding with mutation technique (in Indonesian). Indonesian Center for Isotopes and Radiation Technology Research and Development. National Nuclear Energy Agency of Indonesia, Jakarta.
Sonia M, Yassine M, Marie V, Philippe D, Philippe S, Mouldi S, Omrane B. 2012. Variation in quantitative characters of faba bean after seed irradiation and associated molecular changes. African Journal of Agricultural Research 11: 8383-8390. https://doi.org/10.5897/ajb11.291
Stagnari F, Onofri A, Codianni P, Pisante M. 2013. Durum wheat varieties in N-deficient environments and organic farming: a comparison of yield, quality and stability performances. Plant Breeding 132, 266–275. https://doi.org/10.1111/pbr.12044
Sulaeman DD. 2012. Analisis stabilitas hasil dan keragaan galur-galur padi gogo hasil kultur antera. [Thesis]. Institut Pertanian Bogor, Indonesia.
Tembo L, Munyinda K. 2015. Clustering common bean mutants based on heterotic grouping. African Crop Science 23 (1): 1-7.
Tukamuhabwa P, Asiimwe M, Nabasirye M, Kabayi P, Maphosa M. 2012. Genotype by environment interaction of advanced generation soybean lines for grain yield in Uganda. African Crop Science 20: 107-115.
Widiarsih S, Dwimahyani I. 2013. Aplikasi iradiasi gamma untuk pemuliaan mutasi anggrek bulan (Phalaenopsis amabilis B1). Aplikasi Isotop dan Radiasi 9: 59-66.
Xu Y, Beachell H, Mccouch SR. 2004. A marker-based approach to broadening the genetic base of rice in the USA. Crop Science 44: 1947-1959. https://doi.org/10.2135/cropsci2004.1947
Yuliasti, Reflinur. 2017. Field performance of five soybean mutants under drought stress conditions and molecular analysis using SSR markers. Atom Indonesia 43(2): 103-109. https://doi.org/10.17146/aij.2017.685
Most read articles by the same author(s)
- IFA MANZILA, TRI PUJI PRIYATNO, KRISTIANTO NUGROHO, RERENSTRADIKA TIZAR TERRYANA, PUJI LESTARI, SRI HENDRASTUTI HIDAYAT, Molecular and morphological characterization of EMS-induced chili pepper mutants resistant to Chili veinal mottle virus , Biodiversitas Journal of Biological Diversity: Vol. 21 No. 4 (2020)
- WARTONO, SURYO WIYONO, MUHAMAD SYUKUR, GIYANTO, PUJI LESTARI, Resistance of Capsicum annuum genotypes against various isolates of Phytophthora capsici from Java, Indonesia , Biodiversitas Journal of Biological Diversity: Vol. 20 No. 12 (2019)