Characterization and potential of plant growth-promoting rhizobacteria on rice seedling growth and the effect on Xanthomonas oryzae pv. oryzae
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Rahma H, Nurbailis, Kristina N. 2019. Characterization and potential of plant growth-promoting rhizobacteria on rice seedling growth and the effect on Xanthomonas oryzae pv. oryzae. Biodiversitas 20: 3654-3661. Xanthomonas oryzae pv. oryzae (Xoo), a major limiting factor in rice production, and the use of resistant Xoo varieties have failed to control the bacterial pathogens as well as increased yield. It is due to the diversity in pathotypes, caused by environmental factors, the nature of resistant variety used, and gene mutation. The aims of this study were to select rhizobacterial strains with the potential of suppressing Xoo growth and promoting the growth of rice seedlings. This experiment was conducted in a completely randomized design (CRD) using seven rhizobacterial isolates selected through a dual culture test, with four replications. There were four isolates that potential in inhibiting the growth of Xoo, namely KJKB5.4, LMTSA5.4, Bacillus cereus AJ34, and Alcaligenes faecalis AJ14, with inhibition diameters greater than 11.50 mm. Rhizobacterial supernatant of 4 potential isolates has a zone of inhibition ranging from 12.25 to 24.00 mm. Four potential isolates were also able to solubilize phosphate, produce indole acetic acid (IAA) growth hormone, and siderophore, as well as enhance the growth of rice seedlings. Based on the nucleic acid sequencing of LMTSA5.4, KJKB5.4, and RK12 isolates were identified as Stenotrophomonas malthopilia strain LMG 958 (99.13%) accession NR 119220.1, Stenotrophomonas pavanii strain LMG 25348 (95.84%) accession NR 118008.1 and Ochrobactrum ciceri strain ca-34 (92.91%) accession NR115819.1.
##plugins.themes.bootstrap3.article.details##
Agustiansyah, Ilyas S, Sudarsono, Machmud M. 2013. Karakterisasi rizobakteri yang mampu meningkatkan pertumbuhan tanaman padi dan mengendalikan penyakit hawar daun bakteri. Jurnal Hama dan Penyakit Tropika 13 (1): 42-51.
Ali SS, Vidhale NN. 2013. Bacterial Siderophore and Their Application: A Review. International Journal of Current Microbiology and Applied Science 2(12): 303-312.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST?: a new generation of protein database search programs. 25(17), 3389–3402.
Beneduzi A, Ambrosini A, Passaglia LMP. (2012). Pgpr En Rhizosfeer Intro. Genetics and Molecular Biology, 35(4 (suppl)), 1044–1051. https://doi.org/10.1590/S1415-47572012000600020
Bhattacharyya P, Jha DK. 2012. Plant growth-promoting rhizobacteria ( PGPR ): Emergence in agriculture Plant growth-promoting rhizobacteria ( PGPR ): emergence in agriculture. World J Microbiol Biotechnol (2012) 28:1327–1350 DOI 10.1007/s11274-011-0979-9
Chithrashree AC, Udayashankar, Nayaka SC , Reddy MS, Srinivas C. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control 59 (2011) 114–122
Couillerot O, Moe Y. 2009. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. 48, 505–512. https://doi.org/10.1111/j.1472-765X.2009.02566.x
Dimkpa C. 2016. Microbial siderophores?: Production , detection and application in agriculture and environment Microbial siderophores?: Production , detection and application in agriculture and environment. Endocytobiosis and Cell Research (2016) 27(2):7-16
Duca D, Lorv J, Patten CL, Rose D, Glick BR. 2014. Indole-3-acetic acid Indole-3-acetic acid in plant – microbe interactions. Antonie van Leeuwenhoek 106:85–125 DOI 10.1007/s10482-013-0095-y
Galkiewicz JP, Kellogg CA. 2008. Cross-Kingdom Amplification Using Bacteria -Specific Primers?: Complications for Studies of Coral Microbial Ecology. 74(24), 7828–7831. https://doi.org/10.1128/AEM.01303-08
Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, Mcconkey B. 2007. Promotion of Plant Growth by Bacterial ACC Deaminase Promotion of Plant Growth by Bacterial ACC Deaminase. Critical Reviews in Plant Sciences, 26:227–242. https://doi.org/10.1080/07352680701572966
Glickmann E, Dessaux Y. 1995. A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. 61(2), 793–796.
Hall AT. 2011. BioEdit?: An important software for molecular biology BioEdit?: An important software for molecular biology. GERF Bulletin of Biosciences. 2(1):60-61
Hayat R, Ahmed I, Sheirdil RA. 2012. An Overview of Plant Growth Promoting Rhizobacteria ( PGPR ) for Sustainable An Overview of Plant Growth Promoting Rhizobacteria ( PGPR ) for Sustainable Agriculture. M. Ashraf et al. (eds.), Crop Production for Agricultural Improvement, DOI 10.1007/978-94-007-4116-4_22 https://doi.org/10.1007/978-94-007-4116-4
Hu Q, Xu J. 2011. A simple double-layered chrome azurol S agar ( SD- CASA ) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. 5(25), 4321–4327. https://doi.org/10.5897/AJMR11.238
Istiqomah dan Kusumawati DE (2018). Pemanfaatan Bacillus subtilis dan Pseudomonas fluorescens Dalam Pengendalian Hayati Ralstonia solanacearum Penyebab Penyakit Layu Bakteri Pada Tomat. Jurnal Agro 5(1): 1–12.
Kannahi M, Senbagam N. 2014. Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. 6(4), 1142–1145.
Kanthaiah K, Velu RK. 2019. Archives of Phytopathology and Plant Protection Characterization of the bioactive metabolite from a plant growth promoting rhizobacteria Pseudomonas aeruginosa VRKK1 and exploitation of antibacterial behaviour against Xanthomonas campestris a causative agent of bacterial blight disease in cowpea Characterization of the bioactive metabolite from a aeruginosa VRKK1 and exploitation of antibacterial causative agent of bacterial blight disease in cowpea. Archives of Phytopathology and Plant Protection. Archives Of Phytopathology And Plant Protection 1–18. https://doi.org/10.1080/03235408.2018.1557883.
Kumar S, Tamura K, Nei M. 2004. MEGA3?: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. 5(2), 150–163.
Midekssa MJ, Löscher CR, Schmitz RA, Assefa F. 2016. Phosphate solubilization and multiple plant growth promoting properties of rhizobacteria isolated from chickpea ( Cicer aeritinum L .) producing areas of Ethiopia. 15(35), 1899–1912. https://doi.org/10.5897/AJB2015.15172
Sutariati GAK, Widodo, Sudarsono, Ilyas S. 2006. Pengaruh Perlakuan Rizo-bakteri Pemacu Pertumbuhan Tanaman terhadap Viabilitas Benih serta Pertumbuhan Bibit Tanaman Cabai. Bul Agron. 34(1): 46-54.
Rabbee MF, Ali S, Choi J, Hwang BS, Jeong SC, Baek K. 2019. Bacillus velezensis?: A Valuable Member of Bioactive Molecules within Plant Microbiomes. 1–13. https://doi.org/10.3390/molecules24061046
Rahma H, Arneti, Nofrianti S. (2018). Seleksi rizobakteri dalam menekan pertumbuhan cendawan Diplodia maydis penyebab penyakit busuk tongkol pada jagung secara. Pros Sem Nas Masy Biodiv Indon. 4(2),: 225-230
Rahma H, Zainal A, Surahman M, Sinaga M, Giyanto. 2014. Potensi bakteri endofit dalam menekan penyakit layu stewart (Pantoea stewartii subsp. stewartii) pada tanaman jagung. J HPT Tropika, 14(2), 121–137.
Richardson AE, Simpson RJ. 2011. Soil Microorganisms Mediating Phosphorus. Plant Physiology. Vol. 156, pp. 989–996. Availability. 156: 989–996. www.plantphysiol.org/cgi// https://doi.org/10.1104/pp.111.175448
Riley MA. 1993. Molecular Mechanisms of Colicin Evolution. Mol. Bid. Ed.lO(6): I380- 1395. 1993.
Saitou N, Nei M. 1987. The Neighbor-joining Method?: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 4(4):406-425
Thakuria D. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science. 86(7):978-985.
Whipps JM. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, Vol. Roots Special Issue (52):487-511
Most read articles by the same author(s)
- HALIATUR RAHMA, NURBAILIS, MUNZIR BUSNIAH, NILA KRISTINA, YUMBA LARASATI, The potential of endophytic bacteria to suppress bacterial leaf blight in rice plants , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 2 (2022)
- TRIZELIA, HALIATUR RAHMA, MY SYAHRAWATI, Diversity of endophytic fungi of rice plants in Padang City, Indonesia, entomopathogenic to brown planthopper (Nilaparvata lugens) , Biodiversitas Journal of Biological Diversity: Vol. 24 No. 4 (2023)
- HALIATUR RAHMA, MARTINIUS, UJANG KHAIRUL, FADHILA RAHMI, The potential of beneficial microbes to suppress the development of bacterial leaf blight in rice plants caused by Xanthomonas oryzae pv. oryzae , Biodiversitas Journal of Biological Diversity: Vol. 24 No. 8 (2023)