Phenotypic plasticity of eddoe and dasheen taro genotypes in response to saturated water and dryland cultivations

##plugins.themes.bootstrap3.article.main##

CARECA SEPDIHAN RAHMAT HIDAYATULLAH
EDI SANTOSA
DIDY SOPANDIE
ARIEF HARTONO

Abstract

Abstract. Hidayatullah CSR, Santosa E, Sopandie D, Hartono A. 2020. Phenotypic plasticity of eddoe and dasheen taro genotypes in response to saturated water and dryland cultivations. Biodiversitas 21: 4550-4557.  The phenotypic plasticity of dasheen and eddoe taro genotypes was evaluated based on growth and yield characters to select proper genotypes in response to climate change. The study was conducted at the Leuwikopo Experimental Farm, Bogor, Indonesia from May to October 2019. Dasheen (Talas Sutra and Talas Bentul) and eddoe genotypes (S28 and S19) were planted in saturated water cultivation (SWC) and dryland cultivation (DC). DC relied on rainwater, and SWC was manipulated dryland by flooding. SWC promoted vigorous growth and tuber weight, irrespective of genotypes. Increasing taro biomass production in SWC was supported by higher photosynthetic rate, leaf number, and size. Dasheen genotypes produced higher tuber weight than the eddoe in SWC, conversely, the eddoe tended to produced heavier tuber than the dasheen in DC; indicating phenotypic plasticity is strongly affected by soil moisture and genotype. The dasheen had more plastic growth and yield characters to soil moisture than the eddoe genotypes, with plasticity level, ranging from low to very high. Taro had high resiliency to multiple abiotic stresses, e.g. flood, and drought. Considering the marketable value of the yield, dasheen and eddoe genotypes are recommended in flooding and drought-prone areas, respectively.

##plugins.themes.bootstrap3.article.details##

References
Anjum SA, Xie X-Y, Wang L-C, Saleem MF, Man C, Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African J Agric Res 6(9): 2026-2032.
Ariyanti EE. 2010. Utilization of various plants as food in Blidit county, Egon village, Waigete subdistrict, Sikka district, NTT province. Berk Penel Hayati Edisi Khusus 4: 55-58. [in Indonesian]
Arnold PA, Kruuk LEB, Nicotra AB. 2019. How to analyze plant phenotypic plasticity in response to a changing climate. New Phytologist 222(3): 1235-1241. Doi: 10.1111/nph.15656
BB BIOGEN [Balai Besar Penelitian Bioteknologi dan Sumberdaya Genetik Pertanian]. 2020. Agriculture Gene Bank: Tanaman Talas. Available from: http://sdg.litbang.pertanian.go.id/?page_id=419 [Access in July 23, 2020]
Chaïr H, Traore RE, Duval MF, Rivallan R, Mukherjee A, Aboagye LM, Van Rensburg WJ, Andrianavalona V, De Pinheiro Carvalho MAA, Saborio F, et al. 2016. Genetic diversification and dispersal of taro (Colocasia esculenta (L.) Schott). PLoS One 11(6):1–19.
Dulbari, Santosa E, Sulistyono E, Koesmaryono Y. 2017. Adaptation of wetland rice to extreme weather. J Trop Crops Sci 4(2): 70-77.
Fiedler S, Vepraskas MJ, Richardson JL. 2007. Soil redox potential: Importance, field measurements, and observations. Adv Agron 94: 1-54. Doi: 10.1016/S0065-2113(06)94001-2
Ganança JFT, Freitas JGR, Nóbrega HGM, Rodrigues V, Antunes G, Gouveia CSS, Rodrigues M, Chaïr H, De Carvalho MÂA, Lebot V. 2018. Screening for drought tolerance in thirty three taro cultivars. Not Bot Horti Agrobot Cluj-Napoca 46(1): 65-74.
Gosavi GU, Jadhav AS, Kale AA, Gadakh SR, Pawar BD, Chimote VP. 2014. Effect of heat stress on proline, chlorophyll content, heat shock proteins, and antioxidant enzyme activity in sorghum (Sorghum bicolor) at seedlings stage. Indian J Biotechnol 13(3): 356-363.
Gouveia CSS, Ganança JFT, Slaski J, Lebot V, Pinheiro de Carvalho MÂA. 2019. Stable isotope natural abundances (?13C and ?15N) and carbon-water relations as drought stress mechanism response of taro (Colocasia esculenta (L.) Schott). J Plant Physiol 232: 100-106. Doi: 10.1016/j.jplph.2018.11.024.
Hetharie H, Raharjo SHT, Wattimena AY, Tomasoa R, Dahamarudin L. 2018. Genetic diversity and potentials of local sweet potato under partial submergence condition. J Budidaya Pert 14(1): 1-7. Doi: 10.30598/jbdp.2018.14.1.1 [in Indonesian]
Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA. 2008. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194(3): 193-199.
IPGRI [International Plant Genetic Research Institute].1999. Descriptors for Taro (Colocasia esculenta). Italy (IT): IPGRI.
Irwan AW, Wicaksono FY. 2017. Comparations of soybean’s leaf area measurement using gravimetry, regression, and scanning. J Kultivasi 16(3): 425-429. [in Indonesian]
Ivancic A, Lebot V. 2000. The Genetics and Breeding of Taro. France (FR): CIRAD
Kallo R, Satna A, Nappa MB. 2019. Prospect of Japanese taro satoimo development in South Sulawesi. Bul Diseminasi Teknologi Pertanian 1: 1-6 [in Indonesian]
Mabhaudhi T, Modi AT, Beletse YG. 2013. Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rain shelter. Agric Water Manag 121: 102-112.
Mabhaudhi T, Modi AT. 2015. Drought tolerance of selected South African taro (Colocasia esculenta L. Schott) landraces. Exp Agric 51(3): 451-466.
Maretta D, Sobir, Helianti I, Purwono, Santosa E. 2020. Genetic diversity in eddoe taro (Colocasia esculenta var. antiquorum) from Indonesia based on morphological and nutritional characteristics. Biodiversitas 21(8): 3525-3533. Doi: 10.13057/biodiv/d210814.
Marschner P. 2012. Mineral Nutrition of Higher Plants. Adelaide (AU): Academic Pr.
Morales-Olmedo M, Ortiz M, Sellés G. 2015. Effects of transient soil waterlogging and its importance for rootstock selection. Chilean J Agric Res 75: 45-56. Doi: 10.4067/S0718-58392015000300006
Nurbaya SR, Estiasih T. 2013. Utilization of yellow corm taro (Colocasia esculenta (L.) Schott) in producing cookies. J Pangan Agroindustri 1(1): 46-55. [in Indonesian]
Nurilmala F, Hutagaol RP, Widhyastini IM, Widyastuti U, Suharsono. 2017. Somaclonal variation induction of Bogor taro (Colocasia esculenta) by gamma irradiation. Biodiversitas 18(1): 28-33. Doi: 10.13057/biodiv/d180105
Ravi V, Suja G, George J, Nedunchezhiyan M, Saravanan R, Byju G. 2015. Critical period of crop sensitivity to water deficit stress in elephant foot yam (Amorphophallus paeoniifolius). Indian J Agric Sci 85(2): 274-277.
Ren BZ, Zhang JW, Dong ST, Liu P, Zhao B. 2016. Effects of duration of waterlogging at different growth stages on grain growth of summer maize (Zea mays L.) under field conditions. J Agron Crop Sci 6: 564-575. Doi: 10.1111/jac.12183
Rubaiyath Bin Rahman ANM, Zhang J. 2016. Flood and drought tolerance in rice: Opposite but may coexist. Food Energy Security 5(2): 76-88. Doi: 10.1002/fes3.79
Sagala D, Ghulamahdi M, Melati M. 2011. Nutrient uptake and growth of soybean varieties under saturated soil culture on tidal swamps. J Agroqua 9(1): 1-10. Doi: 10.32663/ja.v9i1.40 [in Indonesian]
Sahoo MR, Das Gupta M, Mukherjee A. 2008. Effect of in vitro and in vivo induction of polyethylene glycol mediated osmotic stress on hybrid taro (Colocasia esculenta (L.) Schott). Ann Trop Res 28(2): 1-11.
Santosa E, Mine Y, Lontoh AP, Sugiyama N, Sari M, Kurniawati A. 2019. Gibberellic acid application causes erratic flowering on young corms of Amorphophallus muelleri Blume (Araceae). Hort J 88(1): 92-99. Doi: 10.2503/hortj.UTD-016
Santosa E, Sakti GP, Fattah MZ, Zaman S, Wachjar A. 2018b. Cocoa production stability in relation to changing rainfall and temperature in East Java, Indonesia. J Trop Crops Sci 5 (1): 6-17.
Santosa E, Sugiyama N, Hikosaka S, Kawabata S. 2003. Cultivation of Amorphophallus muelleri Blume in timber forests of East Java, Indonesia. Jpn J Trop Agr 47(3): 190-197.
Santosa E, Sugiyama N, Kurniawati A, Lontoh AP, Sari M, Krisantini. 2018a. Variation in floral morphology of agamosporous Amorphophallus muelleri Blume of natural and gibberellin flowerings. J Appl Hort 20(1): 15-29. Doi: 10.37855/jah.2018.v20i01.03
Santosa E, Sugiyama N, Sulistyono E, Sopandie D. 2004. Effects of watering frequency on the growth of elephant foot yams. Jpn J Trop Agr 48(4): 235-239.
Santoso AB. 2016. The impact of climate change on food crop production in the province of Maluku. J Penelit Pert Tan Pangan 35(1): 29-38. [in Indonesian]
Setyowati M, Minantyorini. 2016. Corm weight stability character of genetic resources of taro (Colocasia esculenta L.) collected by ICABIOGRAD. Bul Plasma Nutfah 22(2): 119-126.
Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing Environ 81(2-3): 337-354.
Singh SP, Setter TL. 2017. Effect of waterlogging on element concentrations, growth and yield of wheat varieties under farmer’s sodic field conditions. Proc Natl Acad Sci India Sect. B 87(2): 513-520.
Striker GG. 2012. Flooding stress on plants: Anatomical, morphological and physiological responses, Botany, John Kiogora Mworia, IntechOpen. Doi: 10.5772/32922. Available from: https://www.intechopen.com/books/botany/flooding-stress-on-plants-anatomical-morphological-and-physiological-responses
Sugiyama N, Santosa E. 2008. Edible Amorphophallus in Indonesia–Potential Crops in Agroforestry. Yogyakarta (IDN): Gadjah Mada University Pr.
Tian L, Li J, Bi W, Zuo S, Li L, Li W, Sun L. 2019. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agric Water Manag 218: 250-258.
Tubur HW, Chozin MA, Santosa E, Junaedi A. 2012. Agronomic responses of low land rice varieties to drought periods. J Agron Indonesia 40(3): 167-173. [in Indonesian]
Virtanen S, Puustinen M, Yli-Halla M. 2017. Oxidation of iron sulfides in subsoils of cultivated boreal acid sulfate soil fields-based on soil redox potential and pH measurements. Geoderma 308: 252-259. Doi: 10.1016/j.geoderma.2017.05.020
Wairiu M, Lal M, Iese V. 2012. Climate change implications for crop production in Pacific islands region, Food Production - Approaches, Challenges and Tasks, Anna Aladjadjiyan, IntechOpen. Doi: 10.5772/33885. Available from: https://www.intechopen.com/books/food-production-approaches-challenges-and-tasks/climate-change-implications-for-crop-production-in-pacific-islands-region.

Most read articles by the same author(s)

1 2 > >>