Differential hierarchical metabolites expression of red/white Salacca sumatrana arillus and its molecular docking studies

##plugins.themes.bootstrap3.article.main##

MIFTAHUL HUDA FENDIYANTO
https://orcid.org/0000-0002-0502-2669
RIZKY DWI SATRIO
https://orcid.org/0000-0003-1716-2076
I DEWA KETUT KERTA WIDANA
https://orcid.org/0000-0002-1924-3489
MENTARI PUTRI PRATAMI
ISNA AROFATUN NIKMAH
DIDI DARMADI

Abstract

Abstract. Fendiyanto MH, Satrio RD, Widana IDKK, Pratami MP, Nikmah IA, Darmadi D. 2021. Differential hierarchical metabolites expression of red/white Salacca sumatrana Arillus and its molecular docking studies. Biodiversitas 22: 1014-1024. Salak Sidempuan (Salacca sumatrana) is one of the medicinal plants originating from tropical countries. However, there is very little research on the study of finding bioactive compounds in S. sumatrana using the metabolomic approach. Here, we use two population types of S. sumatrana, e.g., fruit with red and white arillus. We extracted the compounds from the two tissues using the GC-MS technique and further analyzed their antiviral potential using an in-silico molecular docking technique. Fold change analysis showed that in white arillus there were 21 upregulated compounds and 25 downregulated compounds. Metabolites that have high expression in white arillus tissue are ranxinic acid, nicotinic alcohol, stearic acid, 2-furan carboxaldehyde, and others. Six accessions from S. sumatrana based on PCA analysis and separate dendrogram according to the type of arillus, i.e., red and white arillus. Two compounds that act as antivirals found in this study are stearic acid and palmitic acid based on preliminary molecular docking studies. These two compounds could be used for further studies as a preventive measure against SARS-Cov-2 in the future, however, it needs further comprehensive and clinical analysis the future. In conclusion, metabolites in white arillus were distinctly different from red arillus of Snake fruits. In addition, studies on differential metabolite expression on two types of arillus (red/white) can be used as markers in identifying arillus color early by plant breeders.

##plugins.themes.bootstrap3.article.details##

References
Aralas S, Mohamed M, Fadzelly ABM. 2009. Antioxidant properties of selected salak (Salacca zalacca) varieties in Sabah, Malaysia. Nutr Food Sci 39 (3):243-250.
Bates PD, Ohlrogge JB, Pollard M. 2007. Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282: 31206-31216.
Browse J, Somerville C. 1991. Glycerolipid synthesis: biochemistry and regulation. Ann Rev Plant Physiol 42: 467-506.
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucl Acids Res 46: 486-494.
Chong J, Wishart DS, Xia J. 2019. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics 68:e86.
Chong J, Xia J. 2018. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 27: 4313-4314.
Do Amaral MN, Arge LWP, Benitez LC, Danielowski R, da Silveira Silveira SF, da Rosa Farias D, de Oliveira AC, da Maia LC, Braga EJB. 2016. Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct Integr Genomics 16 (5):567-579. doi:10.1007/s10142-016-0507-y.
Erlina L, Paramita RI, Kusuma WA, Fadilah F, Tedjo A, Pratomo IP, Ramadhanti NS, Nasution AK, Surado FK, Fitriawan A, Istiadi KA, Yanuar A. 2020. Virtual screening on indonesian herbal compounds as COVID-19 supportive therapy: machine learning and pharmacophore modeling approaches. Res Square. 3(29):1-35. DOI: https://doi.org/10.21203/rs.3.rs-29119/v1
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Hanarida I, Miftahudin. 2019b. QTL for aluminum tolerance on rice chromosome 3 based on root length characters. SABRAO J Breed Genet 51 (4):451-469.
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Miftahudin. 2019a. Correlation among Snpb11 markers, root growth, and physiological characters of upland rice under aluminum stress. Biodiversitas 20 (5):1243-1254.
Fendiyanto MH, Satrio RD, Darmadi D. 2020. Metabolic profiling and pathway analysis in red arillus of Salacca sumatrana demonstrate significant pyruvate, sulfur, and fatty acid metabolisms. Biodiversitas 21 (9): 4361-4368.
Goulet C, Mageroy MH, Lam NB, Floystad A, Tieman DM, Klee HJ. 2012. Role of an esterase in flavor volatile variation within the tomato clade. PNAS 109 (46):19009-19014.
Harahap GP, Ardiarini NR. 2018. The variability of Padang Sidempuan snake fruit types (Salacca sumatrana) based on morphological characters and analysis isoenzymes. J Produksi Tanaman 6 (5):922-929. [Indonesian]
Harwood JL. 1989. Lipid metabolism. CRC Crit Rev Plant Sci 8: 1-43.
Harwood JL. 1996. Recent advances in the biosynthesis of plant fatty acids. BBA-Lipids Lipid Metab 1301: 7-56.
Hiremath SS, Sajeevan RS, Nataraja KN, Chaturvedi AK, Chinnusamy V, Pal M. 2017. Silencing of fatty acid desaturase (FAD7) gene enhances membrane stability and photosynthetic efficiency under heat stress in tobacco (Nicotiana benthamiana). IJEB 55: 532-541.
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, Antonio C. 2016. Mass spectrometry-based plant metabolomics: metabolite response to abiotic stress. Mass Spectrom Rev 35: 620-649. doi:10.1002/mas.21449.
Joyard J, Douce R. 1987. Galactolipid Synthesis. In Lipids: Structure and Function. Academic Press, New York (USA).
Kanlayavattanakul M, Lourith N, Ospondpant D, Ruktanonchai U, Pongpunyayuen S, Chansriniyom C. 2013. Salak plum peel extract as a safe and efficient antioxidant appraisal for Cosmetics. Biosci Biotechnol Biochem 77 (5):1068-1074.
Kochian LV, Pi˜neros MA, Liu J, Magalhaes JV. 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66: 1-28.
Lander JP. 2014. R for Everyone: Advanced Analytics and Graphics. Addison-Wesley, Boston.
Li F, Li S, Li HB, Deng GF, Ling WH, Wu S, Chen F. 2013. Antiproliferative activity of peels, pulps, and seeds of 61 fruits. J Funct Foods 5 (3):1298-1309.
Ma JF, Chen ZC, Shen RF. 2014. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil 381: 1-12.
Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S, Buono P. 2015. Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules 20: 17339-17361. doi:10.3390/molecules200917339
Mastrangelo A, Ferrarini A, Rey-Stolle F, García A, Barbas C. 2015. From sample treatment to biomarker discovery: A tutorial for untargetedmetabolomics based on GC-(EI)-Q-MS. Anal. Chim. Acta 900: 21–35.
Nair V, Bang WY, Schreckinger E, Andarwulan N, Cisneros-Zevallos L. 2015. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells. J Agric Food Chem. 63(28):6355–65.
Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT. 2003. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106: 583-593.
Nguyen VT, Burow MD, Nguyen HT, Le BT, Le TD, Paterson AH. 2001. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet 102: 1002-1010.
Nikmah IA, Rugayah R, Chikmawati T. 2020. Leaf anatomical variation in Desmos Lour. and Dasymaschalon (Hook.f.&Thomson) Dalla Torre & Harms species (Annonaceae). Biodiversitas 21 (7):3317-3330.
Ohki K. 1986. Photosynthesis, chlorophyll, and transpiration responses in aluminum stressed wheat and sorghum. Crop Sci 26: 572-575.
Pang Z, Chong J, Li S, Xia J. 2020. MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics. Metabolites 10 (5):180-186.
Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. 2015. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of their Molecular Mechanisms and Experimental Models. Phyther Res. 29(3):323–31.
Park SE, Seo SH, Kim EJ, Byun S, Na CS, Son HS. 2019. Changes of microbial community and metabolite in kimchi inoculated with different microbial community starters. Food Chem. 274:558-565.
Pratami MP, Chikmawati T, Rugayah R. 2019. Short Communication: Further morphological evidence for separating Mukia Arn. from Cucumis L. Biodiversitas J Biol Divers 20 (01):211-217.
Pratami MP, Chikmawati T, Rugayah R. 2020. Genetic diversity of Cucumis and Mukia (Cucurbitaceae) based on ISSR markers. SABRAO J Breed Genet 52 (2):127-143.
Pratami MP. 2020. Biosistematika Marga Cucumis dan Mukia (Cucurbitaceae) di Malesia [Disertation]. Institut Pertanian Bogor, Bogor, Indonesia. [Indonesian]
Priyatno LHA, Sukandar EY, Ibrahim S, Adnyana IK. 2012. Antihyperuricemic effect of ethanol extract of snake fruit (Salacca edulis Reinw) var. Bongkok on wistar male rat. J Food Sci Eng 2: 271-276.
Quinet M, Vromman D, Clippe A, Bertin P, Lequeux H, Dufey I, Lutts S, Lefèvre I. 2012. Combined transcriptomic and physiological approaches reveal strong differences between short-and long-term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ 35 (10):1837-1859. doi:10.1111/j.1365-3040.2012.02521.x.
Ragasa CY, Ting JU, Ramones MV, Carmen MST, Lerom RR, Linis VC. 2016. Chemical constituents of Salacca wallichiana mart. Int J Curr Pharm Rev Res 7 (4):186-189.
Saleh MSM, Siddiqui MJ, Mediani A, Ismail NHN, Ahmed QU, So'ad SZM, Saidi-Besbes S. 2018. Salacca zalacca: A short review of the palm botany, pharmacological uses and phytochemistry. Asian Pac J Trop Med 11 (12):645-652.
Satrio RD, Fendiyanto MH, Suharsono, Supena EDJ, Miftahudin. 2019. Identification of drought-responsive regulatory genes by hierarchical selection of expressed sequence tags and their expression under drought stress in rice. Intl J Agric Biol 22 (6):1524-1532.
Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. 2019. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 19(1):1–16.
Tsutsui T, Yamaji N, Ma JF. 2011. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol 156: 925-931.
Tyagi T, Agarwal M. 2017. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. J Pharmacogn Phytochem 6 (1):195-206.
Wang Z, Benning C. 2012. Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites. Biochem Soc Trans 40: 457-463.
Widyowati R, Agil M. 2018. Chemical Constituents and Bioactivities of Several Indonesian Plants Typically Used in Jamu. Chem Pharm Bull. 66(5):506–18.
Wishart DS, Feunang DY, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, C L, Karu N. 2017. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46: 608-617. doi:10.1093/nar/gkx1089.
Wong KC, Tie DY. 1993. Volatile constituents of salak (Salacca edulis Reinw.) fruit. Flavour Frag J 8 (6):321-324.
Xia J, Wishart DS. 2016. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis current protocols in bioinformatics. Bioinformatics 55: 1-91.
Yanuar A, Suhartanto H, Mun’im A, Anugraha BH, Syahdi RR. 2014. Virtual Screening of Indonesian Herbal Database as HIV-1 Protease Inhibitor. Bioinformation. 10(2):52–5.
Yuliamita A. 2014. Keragaman jenis salak bangkalan (Salacca zallaca (Gaetner) Voss) menggunakan penanda morfologi dan analisis isozim. Jurnal Produksi Tanaman 3 (1):35-42. [Indonesian]
Zaini NAM, Osman A, Hamid AA, Ebrahimpour A, Saari N. 2013. Purification and characterization of membrane-bound polyphenol oxidase (mPPO) from snake fruit [Salacca zalacca (Gaertn.) Voss]. Food Chem 136 (2):407-414.
Zhang L, Li G, Wang M, Di D, Sun L, Kronzucker HJ, Shi W. 2018. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. New Phytol 219 (1):259-274. doi:10.1111/nph.15157.

Most read articles by the same author(s)