Screening of actinobacteria-producing amylolytic enzyme in sediment from Litopenaeus vannamei (Boone, 1931) ponds in Rembang District, Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

DIAH AYUNINGRUM
https://orcid.org/0000-0001-8822-5535
ANINDITIA SABDANINGSIH
https://orcid.org/0000-0002-3342-5107
OKTAVIANTO EKO JATI

Abstract

Abstract. Ayuningrum D, Sabdaningsih A, Jati OE. 2021. Screening of actinobacteria-producing amylolytic enzyme in sediment from Litopenaeus vannamei (Boone, 1931) ponds in Rembang District, Central Java, Indonesia. Biodiversitas 22: 1819-1828. Coastal environments are dynamic places where various activities such as aquaculture take place. Waste from intensive aquaculture contains high amounts of organic material that negatively affect the pond system as well as the surrounding environment. Bioremediation using hydrolytic enzymes from microbes has been widely used as an alternative to remove organic waste because of its lower economic cost and more efficient. Microbes such as Gram-positive actinobacteria are widely known as enzyme producers. This research aimed to isolate actinobacteria from Litopenaeus vannamei pond sediment, to purify and characterize the actinobacteria based on morphological appearance, to conduct screening of amylolytic activity, and to identify the species of actinobacteria through 16S rDNA amplification as well as to construct their phylogenetic tree. Sampling was done in Rembang District, Central Java, Indonesia, with 5 sampling stations consist of 14 sampling points. Thirty-eight pure axenic cultures of actinobacteria were successfully isolated using two different media, namely IM6 and IM8. The IM8 medium promoted the most growth of 24 isolates rather than on the IM6 with only 14 isolates. Based on morphological appearance, most isolates belonged to Streptomyces-like actinomycete bacteria as many as 30 isolates and the rest 8 isolates belonged to mycelium-forming non-Streptomyces actinomycete bacteria. The screening results of amylolytic activity showed that all of the 38 actinobacteria formed halo zone with amylolytic index between 1.31-5.29. Top five highest amylolytic index was found in isolates SA4.1 (IM6), SD1.3 (IM8), SC3.3 (IM8), SC3.3 (IM6) and SC3.2 (IM8). The isolate SC3.3 (IM8) according to BLAST homology, showed a 98% similarity with Streptomyces atacamensis C60. Further research is needed to investigate the potential of isolate SC3.3 (IM8) to reduce the BOD level in the aquatic system as a bioremediator candidate.

##plugins.themes.bootstrap3.article.details##

References
Álvarez, A., M.L. Yañez, C.S. Benimeli and M.J. Amoroso. 2012. Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. Int. Biodet. Biodegradation. 66: 14–18.
Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P. 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews 123 (2013) 53–86. https://doi.org/10.1016/j.earscirev.2013.02.008
Asnani A, Ryandini D, Suwandri. 2014. Analisis Potensi Amilolitik dan Selulolitik dari Isolat Aktinomisetes Laut. Prosiding Seminar Nasional ”Percepatan Desa Berdikari melalui Pemberdayaan Masyarakat dan Inovasi Teknologi” 20-21 November 2014 Purwokerto (Indonesia)
Asnani A, Ryandini D, Suwandri. 2015. Karakterisasi dan Identifikasi Spesies Aktinomisetes K-3e. Prosiding Seminar Nasional dan Call for Papers ”Pengembangan Sumber Daya Perdesaan dan Kearifan Lokal Berkelanjutan V” 19-20 November 2015 Purwokerto
Awanis AA, Prayitno SB, Herawati VE. 2017. Kajian Kesesuaian Lahan Tambak Udang Vaname Dengan Menggunakan Sistem Informasi Geografis Di Desa Wonorejo, Kecamatan Kaliwungu, Kendal, Jawa Tengah. Buletin Oseanografi Marina Oktober 2017 Vol 6 No 2:102–109 ISSN : 2089-3507
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43. doi:10.1128/MMBR.00019-15
Bérdy J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1–26.
Bredholt H, Fjærvik E, Johnsen G, Zotchev SB 2008. Actinomycetes from Sediments in the Trondheim Fjord, Norway: Diversity and Biological Activity Mar. Drugs 2008, 6(1), 12–24 ; https://doi.org/10.3390/md6010012
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology & Biochemistry 58 (2013) 216e234. http://dx.doi.org/10.1016/j.soilbio.2012.11.009
Burns RG, Wallenstein MD. 2010. Microbial extracellular enzymes and natural and synthetic polymer degradation in soil: current research and future prospects. World Congress of Soil Science, Soil Solutions for a Changing World. 1 – 6 August 2010, Brisbane, Australia. https://www.iuss.org/19th%20WCSS/Symposium/pdf/0549.pdf
de Souza PM, Magalhães P O. 2010. Application of Microbial ?-Amylase In Industry – A Review. Brazilian Journal of Microbiology 41: 850-861 ISSN 1517-8382
El-Sersy NA, Abd-Elnaby H, Abou-Elela GM, Ibrahim HAH, El-Toukhy NMK, et al. 2010. Optimization, economization and characterization of cellulose produced by marine Streptomyces ruber. Afr J Biotechnol 9: 6355-6364.
Fuentes MS, Benimelli CS, Cuozzo S, Amoroso MJ. 2010. Isolation of pesticide-degrading actinomycetes from a contaminated site: Bacterial growth, removal and dechlorination of organochlorine pesticides. Int. Biodeter. Biodegradation. 64: 434–441.
Hamedi J, Poorinmohammad N. 2017. The Cellular Structure of Actinobacteria. In: ¬Wink¬ J, ¬Mohammadipanah F, ¬Hamedi J (Eds) Biology and Biotechnology of Actinobacteria. Springer, Switzerland.
Kamjam M, Sivalingam P, Deng Z, Hong K. 2017. Deep Sea Actinomycetes and Their Secondary Metabolites. Front Microbiol 8: 760.
Khamna, S., A. Yokota and S. Lumyong. 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 25: 649–655.
Kim SK. 2016. Marine Enzymes Biotechnology: Production and Industrial Applications. Vol. 78 (1st edn), Academic Press, Busan, 608-739, South Korea.
Ludwig W, Euzeby J, Busse H, Trujillo ME, Kampfer P, Whitman WB. 2015. Road map of the phylum Actinobacteria. In: Bergey’s Manual of Systematic of Archaea and Bacteria. John Wiley & Sons, Inc. Online DOI: 10.1002/9781118960608.bm00029.
Ministry of Marine Affairs and Fisheries Republic of Indonesia. 2018. Kinerja Ekspor Produk Perikanan Indonesia Tahun 2018. https://kkp.go.id/djpdspkp/artikel/7947-kinerja-ekspor-produk-perikanan-indonesia-tahun-2018
Ministry of Marine Affairs and Fisheries Republic of Indonesia. 2019. Pengembangan Komoditas Unggulan Strategis Perikanan Budidaya, Dan Tata Kelola Perizinan Untuk Memacu Investasi. https://wri-indonesia.org/sites/default/files/Bappenas%20-%20Double%20Tree%2C%209%20September%202019.pdf
Mohammadipanah F, Dehhaghi M. 2017. Classification and Taxonomy of Actinobacteria. In: ¬Wink¬ J, ¬Mohammadipanah F, ¬Hamedi J (Eds) Biology and Biotechnology of Actinobacteria. Springer, Switzerland
Mukhtar S, Zaheer A, Aiysha D, Malik K A, Mehnaz S. 2017. Actinomycetes: A Source of Industrially Important Enzymes. J Proteomics Bioinform 2017, 10:12 DOI: 10.4172/0974-276X.1000456
O'Leary WM. 1989. Practical handbook of microbiology. CRC press, Boca Raton
Patang, 2016. Pengembangan Udang Windu Melalui Penerapan Pembantutan, Probiotik dan Pengendalian Lingkungan. Orasi ilmiah pengukuhan guru besar disampaikan pada sidang terbuka luar biasa senat Universitas Negeri Makassar pada Selasa, 27 Desember 2016.
Pemerintah Kabupaten Rembang. 2018. Rencana Program Investasi Jangka Menengah (RPIJM) Bidang Cipta 2018-2022. Karyahttp://sippa.ciptakarya.pu.go.id/sippa_online/ws_file/dokumen/rpi2jm/DOCRPIJM_1540922839Microsoft_Word_-_BAB_2_Profil_Kabupaten_Akhir.pdf
Prakash D, Nawani N, Prakash M, Bodas M, Mandal A. 2013. Actinomycetes: a repertory of green catalysts with a potential revenue resource. BioMed Res Int 2013: 1-8.
Preston NP, Jackson CJ, Thompson P, Austin M, Burford MA, Rothlisberg P. 2001. Prawn farm effluent: composition, origin and treatment. Project No. 95/162. Fisheries Reaserach and Development Corporation, Cleveland, OH.
Priyadharsini P, Dhanasekaran D. 2015. Diversity of soil allelopathic Actinobacteria in Tiruchirappalli district, Tamilnadu, India. J Saud Soci Agri Sci 14: 54-60.
Qin S., K. Xing, J.H. Jiang and l.H. Lu. 2011. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotecnol. 89: 457–473.
Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F.2014. The Prokaryotes: actinobacteria. Springer, Berlin, Heidelberg
Stackebrandt E, Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33(4):152
Suwoyo HS, Tahe S, Fahrur M. 2015. Karakterisasi Limbah Sedimen Tambak Udang Vaname (Litopenaeus vannamei) Super Intensif Dengan Kepadatan Berbeda. Prossiding Forum Inovasi Teknologi Akuakultur. Pusat Penelitian dan Pengembangan Perikanan Budidaya. Jakarta, hlm. 901-913.
Zhang F, Chen JJ, Ren WZ, Nie GX, Ming H. 2011. Cloning, expression and characterization of an alkaline thermostable GH9 endoglucanase from Thermobifida halotolerans YIM 90462 T. Biores Technol 102: 10143-10146.
Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J, Lindström K, Zhang L, Zhang X, Strobel GA. 2011. The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau, China. Curr. Microbiol. 62: 182–19.

Most read articles by the same author(s)