Threat of extinction of Macrobrachium esculentum in the Serayu River (Central Java, Indonesia) confirmed by DNA barcoding

##plugins.themes.bootstrap3.article.main##

BARUNA KUSUMA
SLAMET BUDI PRAYITNO
ANINDITIA SABDANINGSIH
PETRUS HARY TJAHJA SOEDIBYA
SURADI W. SAPUTRA

Abstract

Abstract. Kusuma B, Prayitno SB, Sabdaningsih A, Soedibya PHT, Saputra SW. 2024. Threat of extinction of Macrobrachium esculentum in the Serayu River (Central Java, Indonesia) confirmed by DNA barcoding. Biodiversitas 25: 3531-3539. Sweet river prawn (Macrobrachium esculentum Thallwitz 1891 is one of the amphidromous shrimp. Serayu River is one of the habitats of this shrimp. Information about the M. esculentum in the Serayu River, is still minimal, so this research is essential. The Serayu Weir affects the population of Macrobrachium esculentum, which impacts the balance of the Serayu River ecosystem. This study aims to determine the condition of the M. esculentum population in the lower reaches of the Serayu River in order to maintain its sustainability and avoid the threat of extinction. This research was conducted for one year (January-December 2023). The method used was the descriptive method. We collected M. esculentum catches both upstream and downstream of the weir for one year to determine the presence of shrimp as a result of the Serayu Weir. The catch data was compared with the catch data from previous research. M. esculentum has morphological characteristics with a blackish-gray pattern with stripes along its abdomen and has an upper rostrum of 11-14 teeth and 2-4 on the lower rostrum. M. esculentum in the Serayu River has an mtDNA fragment of 686 bp and shows the same species as M. esculentum in GenBank. A total of 65 M. esculentum were collected. This shrimp was not found above the weir (Station 1) but only at station 2 (below the weir) due to the presence of weir. The results showed the importance of constructing migration routes for aquatic biota in the Serayu Weir. Further research is also needed, especially related to the reproductive system of M. esculentum.

##plugins.themes.bootstrap3.article.details##

References
Ahmed ZF, Ahamed F, Rahman MM. Fatema MK. 2021. Spawning season, recruitment, and growth of the freshwater prawn Macrobrachium lamarrei (H. Milne-Edwards, 1837) in a perennial wetland, northeastern Bangladesh. Nauplius 29: 1-10. DOI: 10.1590/2358-2936e2021021.
Akiba M, Sasaki T. 2020. Crustacea specimens of Ryukyu University Museum (Fujukan). Version 1.2. National Museum of Nature and Science, Japan. Occurrence Dataset 1. DOI: 10.15468/vdwqzo accessed via GBIF.org on 2020-11-19.
Arinda ES, Wahyono HD, Santoso A. 2023. Penentuan status mutu air Sungai Serayu menggunakan teknologi online monitoring (Onlimo) dengan metode analisa storet. Jurnal Manajemen Sumberdaya Perairan 19: 102-113. DOI: 10.30598/TRITONvol19issue2page102-113. [Indonesian]
Atminarso D, Lee JB, Robyn JW, Meaghan LR, Jennifer B, Arif W. 2023. Evidence of fish community fragmentation in a tropical river upstream and downstream of a dam, despite the presence of a fishway. Pac Conserv Biol 30 (1): 1-11. DOI: 10.1071/PC22035.
Augusto A, Masui DC. 2014. Sex and reproductive stage differences in the growth, metabolism, feed, fecal production, excretion and energy budget of the Amazon River prawn (Macrobrachium amazonicum). Mar Freshw Behav Physiol 47 (6): 373-388. DOI: 10.1080/10236244.2014.942547.
Beesley LS, Savannah K, Daniel CG, Bradley JP, Michael MD, Peter AN, Thiaggo CT, Chris SK, Mark JK, Caroline AC, Samantha AS. 2023. Modelling the longitudinal distribution, abundance, and habitat use of the giant freshwater shrimp (Macrobrachium spinipes) in a large intermittent, tropical Australian River to inform water resource policy. Freshw Biol 68 (1): 61-76. DOI: 10.1111/fwb.14009.
Bertrand L, Monferrán MV, Mouneyrac C, Amé MV. 2018. Native crustacean species as a bioindicator of freshwater ecosystem pollution: A multivariate and integrative study of multi-biomarker response in active river monitoring. Chemosphere 206: 265-277. DOI: 10.1016/j.chemosphere.2018.05.002.
Bhaumik U, Mukhopadhyay MK, Shrivastava NP, Sharma AP, Singh SN. 2017. A case study of the Narmada River system in india with particular reference to the impact of dams on its ecology and fisheries. Aquat Ecosyst Health Manag 20 (1-2): 151-59. DOI: 10.1080/14634988.2017.1288529.
Burnett MJ, Bradley VZ, Colleen TD. 2023. The migration of aquatic macrocrustaceans over an artificial barrier in the Uthukela River, South Africa. Afr J Ecol 62 (1): 1-7. DOI: 10.1111/aje.13234.
Chappell J, Kyle SM, Mary CF, Catherine MP. 2019. Long-term (37 Years) impacts of low-head dams on freshwater shrimp habitat connectivity in Northeastern Puerto Rico. River Res Appl 35 (7): 1034-43. DOI: 10.1002/rra.3499.
Chen RT, Tsai CF, Tzeng WN. 2009a. 16S and 28S rDNA sequences in phylogenetic analyses of freshwater prawns (Macrobrachium Bate, 1868) from Taiwan. J Crustac Biol 29 (3): 400-412. DOI: 10.1651/08-3069.1.
CBOL [Consortium for the Barcode of Life]. 2016. International Barcode of Life project (iBOL). Occurrence Dataset. DOI: 10.15468/inygc6 accessed via GBIF.org on 2020-11-19
Darbohoesodo. 1987. Potensi Udang Air Tawar di Daerah Banyumas. Makalah Workshop tentang Potensi Macrobrachium spp. Pusat Antar Universitas Ilmu Hayati Institut Teknologi Bandung, Bandung. [Indonesian]
De Grave S, Wowor D, Shy J. 2013. Macrobrachium esculentum. The IUCN Red List of Threatened Species 2013: e.T198185A2515154. DOI: 10.2305/IUCN.UK.2013-1.RLTS.T198185A2515154.en. [16 Oktober 2024]
De Grave S. 2017. Global caridean shrimp fauna. Version 2.3. BioFresh. Occurrence dataset DOI: 10.13148/bfcf7 accessed via GBIF.org on 2024-10-16. https://www.gbif.org/occurrence/1262422670
De Grave S, Kevin GS, Nils AA, Dave JA, Fernando A, Arthur A, Yixiong C, Savrina FC, Werner K, Fernando LM, Timothy JP, Jhy YS, José LV, Daisy W. 2015. Dead shrimp blues: A global assessment of extinction risk in freshwater shrimps (Crustacea: Decapoda: Caridea). PLoS One 10 (3): e0120198. DOI: 10.1371/journal.pone.0120198.
De Melo MS, Masunari S. 2017. Sexual dimorphism in the carapace shape and length of the freshwater palaemonid shrimp Macrobrachium potiuna (Müller, 1880) (Decapoda: Caridea: Palaemonidae): Geometric and traditional morphometric approaches. Anim Biol 67 (2): 93-103. DOI: 10.1163/15707563-00002522.
de Oliveira LJF, Sant’Anna BS, Hattori GY. 2019. Population biology of the freshwater prawn Macrobrachium brasiliense (Heller, 1862) in the Middle Amazon Region, Brazil. Trop Zool 32 (1): 19-36. DOI: 10.1080/03946975.2018.1542195.
Devi TSR, Shah DN. 2013. Evaluation of benthic macroinvertebrate assemblage for disturbance zonation in urban rivers using multivariate analysis: Implications for river management. J Earth Syst Sci 122 (4): 1125-1139. DOI: 10.1007/s12040-013-0317-8.
Geller J, Meyer C, Parker M, Hawk H. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 13 (5): 851-861. DOI: 10.1111/1755-0998.12138.
González-Castellano I, González-López J, González-Tizón AM, Martínez-Lage A. 2020. Genetic diversity and population structure of the rockpool shrimp Palaemon elegans based on microsatellites: Evidence for a cryptic species and differentiation across the Atlantic-Mediterranean transition. Sci Rep 10: 10784. DOI: 10.1038/s41598-020-67824-7.
Goud J, Van der Bijl B, Creuwels J. 2020. Naturalis Biodiversity Center (NL)-Crustacea. Occurrence Dataset. DOI: 10.15468/vjoltu accessed via GBIF.org on 2020-11-19
Han CC, Lai CH, Huang CC, Wang IC, Lin H. Du, Wang WK. 2022. Phylogeographic structuring of the kuroshio-type prawn Macrobrachium japonicum (Decapoda: Palaemonidae) in Taiwan and Ryukyu Islands. Diversity 14 (8): 617. DOI: 10.3390/d14080617.
Heim-Ballew H, Moody KN, Blum MJ, McIntyre PB, Hogan JD. 2020. Migratory flexibility in native Hawai ian amphidromous fishes. J Fish Biol 96: 456-468. DOI: 10.1111/jfb.14224.
Hernawati R, Nurhaman U, Busson F, Suryobroto B, Hanner R, Keith P, Wowor D, Hubert N. 2020. Exploring community assembly among Javanese and Balinese freshwater shrimps (Atyidae, Palaemonidae) through DNA barcodes. Hydrobiologia 847 (2): 647-663. DOI: 10.1007/s10750-019-04127-7.
Hiraga H, Azuma K, Kusaka T, Kinoshita I, Fujita S. 2021. Downstream drifting of Macrobrachium (Decapoda: Palaemonidae) larvae in the Shimanto river, Japan. Plankton Benthos Res 16 (4): 301-307. DOI: 10.3800/pbr.16.301.
Huete-Perez JA, Ortega-Hegg M, Urquhart GR et al. 2016. Critical uncertainties and gaps in the environmental-and social-impact assessment of the proposed interoceanic canal through Nicaragua. BioScience 66 (8): 632-645. DOI: 10.1093/biosci/biw064.
Hurwood DA, Dammannagoda S, Krosch MN, Jung H, Salin KR, Youssef MABH, Bruyn MDe, Mather PB. 2014. Impacts of climatic factors on evolution of molecular diversity and the natural distribution of wild stocks of the giant freshwater prawn (Macrobrachium rosenbergii). Freshw Sci 33 (1): 217-231. DOI: 10.1086/675243.
Indarjo A, Salim G, Nugraeni CD, Zein M, Ransangan J, Prakoso LY, Suhirwan, Anggoro S. 2021. Length-weight relationship, sex ratio, mortality and growth condition of natural stock of Macrobrachium rosenbergii from the estuarine systems of North Kalimantan, Indonesia. Biodiversitas 22: 846-857. DOI: 10.13057/biodiv/d220239.
Jarvis MG, Closs GP. 2019. Water infrastructure and the migrations of amphidromous species: Impacts and research requirements. J Ecohydraulics 4 (1): 4-13. DOI: 10.1080/24705357.2019.1611390.
Jose D, Harikrishnan M. 2019. Evolutionary history of genus Macrobrachium inferred from mitochondrial markers: A molecular clock approach. Mitochondrial DNA Part A: DNA Map Seq Anal 30 (1): 92-100. DOI: 10.1080/24701394.2018.1462347.
Jose D, Nidhin B, Anil Kumar KP, Pradeep PJ, Harikrishnan M. 2016. A molecular approach towards the taxonomy of fresh water prawns Macrobrachium striatum and M. equidens (Decapoda, palaemonidae) using mitochondrial markers. Mitochondrial DNA 27 (4): 2585-2593. DOI: 10.3109/19401736.2015.1041114.
Jurniati, Arfiati D, Andriyono S, Hertika AMS, Kurniawan A, Tanod WA. 2021. The morphological characters and dna barcoding identification of sweet river prawn Macrobrachium esculentum (Thallwitz, 1891) from Rongkong watershed of south Sulawesi, Indonesia. Biodiversitas 22: 113-121. DOI: 10.13057/biodiv/d220116.
Khan SR, Akter H, Sultana N, Khan MGQ, Wahab MA, Alam MS. 2014. Genetic diversity in three river populations of the giant freshwater prawn (Macrobrachium rosenbergii) in Bangladesh assessed by microsatellite DNA markers. Intl J Agirc Biol 16 (1): 195-200.
Kusbiyanto K. 2009. Bioekologi udang Macrobrachium spp. di Sungai Banjaran Kabupaten Banyumas. Biosfera 26 (1): 23-29. [Indonesian]
Lagarde R, Teichert N, Boussarie G, Grondin H, & Valade P. 2015. Upstream migration of amphidromous gobies of La Réunion Island: Implication for management. Fish Manag Ecol 22 (6): 437-449. DOI: 10.1111/fme.12142.
Lázaro-Vázquez A, Castillo MM, Jarquín-Sánchez A, Carrillo L, Capps KA. 2018. Temporal changes in the hydrology and nutrient concentrations of a large tropical river: Anthropogenic influence in the lower Grijalva River, Mexico. River Res Appl 34 (7): 649-660. DOI: 10.1002/rra.3301.
Molina WF, Costa GWWF, Cunha IMC, Bertollo LAC, Ezaz T, Liehr T, Cioffi MB. 2020. Molecular cytogenetic analysis in freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae). Intl J Mol Sci 21: 2599. DOI: 10.3390/ijms21072599.
Nascimento WM, Isis CD, Rayury SM, Pinheiro P. 2020. Sexual size dimorphism of the freshwater shrimp Macrobrachium jelskii (Miers, 1877) (Decapoda?: Palaemonidae ) and its relationship to rensch’s rule. Invertebr Reprod Dev 64 (2): 106-114. DOI: 10.1080/07924259.2020.1726513.
Nogueira CS, Perroca JF, Piantkoski EL, Costa RC, Taddei FG, Fransozo A. 2019. Relative growth and popuation dynamics of Macrobrachium iheringi (Decapoda, Palaemonidae). Papéis Avulsos de Zoologia (São Paulo) 59: e20195908. DOI: 10.11606/1807-0205/2019.59.08.
Nogueira CS, Gois GVMR, Pescinelli RA, Costa RC. 2023. Different strategies and shapes: The relationship between mating system and sexual dimorphism in two freshwater prawn species. NZ J Zool 50 (2): 329-340. DOI: 10.1080/03014223.2022.2043394.
Novak PA, Bayliss P, Crook DA, Garcia EA, Pusey BJ, Douglas MM. 2017. Do upstream migrating, juvenile amphidromous shrimps, provide a marine subsidy to river ecosystems??. Freshw Biol 12 (January): 1-14. DOI: 10.1111/fwb.12907.
Pantaleão JAF, Carvalho-batista A. 2018. The influence of environmental variables in the reproductive performance of Macrobrachium amazonicum (Heller, 1862) (Caridea: Palaemonidae) females in a continental population. Anais Da Academia Brasileira de Ciências 90 (2): 1445-1458. DOI: 10.1590/0001-3765201820170275.
Pérez-Reyes O, Crowl TA, Covich AP. 2015. Effects of food supplies and water temperature on growth rates of two species of freshwater tropical shrimps. Freshw Biol 60: 1514-1524. DOI: 10.1111/fwb.12584.
Pérez-Reyes O, Crowl TA, Covich AP. 2016. Comparison of decapod communities across an urban-forest land use gradient in Puerto Rican streams. Urban Ecosyst 19 (1): 181-203. DOI: 10.1007/s11252-015-0490-4.
Pescinelli RA, Carosia MF, Pantaleão JAF, Simões SM, Costa RC. 2016. Population biology and size at the onset of sexual maturity of the amphidromous prawn Macrobrachium olfersii (Decapoda, Palaemonidae) in an urban river in southeastern Brazil. Invertebr Reprod Dev 60 (4): 254-262. DOI: 10.1080/07924259.2016.1202338.
Pranoto WA, Johan J, Reynaldo. 2019. Study of suspended sediment transport discharge of Serayu River, Central Java, Indonesia in laboratory. IOP Conf Ser: Mat Sci Eng 650 (1): 012058. DOI: 10.1088/1757-899X/650/1/012058.
Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod, SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94 (3): 849-873. DOI: 10.1111/brv.12480.
Ribeiro CC, Lopes VHP, Bertini G. 2020. Abundance and spatio-temporal distribution of the amphidromous shrimp Macrobrachium olfersii (Caridea: Palaemonidae) along the Ribeira de Iguape River (São Paulo, Brazil). Nauplius 28: e2020017. DOI: 10.1590/2358-2936e2020017.
Rismawati R, Krisanti M, Farajallah A. 2024. Sexual dimorphism phenomenon of first record Macrobrachium lar (Fabricius, 1978) from the southern Sukabumi, West Java, Indonesia. Biodiversitas 25 (5): 1929-1937. DOI: 10.13057/biodiv/d250509.
Rocha SSda, Barbosa RdeJ. 2017. Population biology of Macrobrachium jelskii (Miers, 1877) (Decapoda, Palaemonidae) from an artificial pond in Bahia, Brazil. Nauplius 25 (1): e2017023. DOI: 10.1590/2358-2936e2017023.
Santos MNM, Wowor D, Ikeda M, Padilla PI, Romana-Eguia MR. 2024. Morphological and genetic diversity assessment of freshwater prawns (Macrobrachium spp.) in the Cairawan River, Antique Province, Panay Island, Philippines. Phillipp J Fish 31 (1): 1-14. DOI: 10.31398/tpjf/31.1.2023-0009.
Savaya AAt, Ohad R, Susanne HS, Yacinthe PWF, Djibril SF, Eliahu DA, Nicolas J, Dina Z, Elizabeth H, Amir S. 2014. The prawn Macrobrachium vollenhovenii in the Senegal River Basin: Towards sustainable restocking of all-male populations for biological control of schistosomiasis. PLoS Negl Trop Dis 8 (8): e3060. DOI: 10.1371/journal.pntd.0003060.
Senckenberg. 2004. Collection Crustacea-ZMB. Occurrence Dataset. DOI: 10.15468/fwghff accessed via GBIF.org on 2020-11-19.
Secor WE. 2014. Water-based interventions for schistosomiasis control. Pathogens Glob Health 108 (5): 246-254. DOI: 10.1179/2047773214Y.0000000149.
Senckenberg. 2004. Collection Crustacea-ZMB. Occurrence Dataset DOI: 10.15468/fwghff. https://www.gbif.org/occurrence/251627986. [19 November 2020]
Sethi SN, Ram N, Venkatesan V. 2014. Reproductive biology of Macrobrachium lar (Fabricius, 1798) in Andaman Islands. Indian J Geo-Mar Sci 43 (12): 2269-2276.
Short JW. 2004. A revision of Australian river prawns, Macrobrachium (Crustacea: Decapoda: Palaemonidae). Hydrobiologia 525 (1-3): 1-100. DOI: 10.1023/B:HYDR.0000038871.50730.95.
Silva GMF, Liziane BG, Marcelo CA, Breno RMS, Ingrid SP, Rossineide MR, Maria APF. 2020. Has a river dam affected the life?history traits of a freshwater prawn. Ecol Evol 10 (13): 6536-6548 . DOI: 10:6536-6548.
Silva RCE, Marina CC, Emerson CM, Giuliano BJ. 2019. Population structure of Macrobrachium amazonicum (Heller, 1862) (Decapoda: Palaemonidae) in Miranda hydroelectric plant reservoir, Araguari River, Minas Gerais, Brazil. Acta Limnol Brasiliensia 31: 1-12. DOI: 10.1590/s2179-975x4318.
Silva-Junior EF, Silva-Araújo M, Moulton TP. 2017. Distribution and abundance of freshwater decapods in an Atlantic rainforest catchment with a dammed future. Braz J Biol 77 (4): 820-829. DOI: 10.1590/1519-6984.01916.
Sinaga S, Yunita M, Arning WE, Maheno SW. 2024. The impact of artificial barriers on the Varuna litterata migration route in the lower Serayu River, Central Java and its molecular identification. Omni-Akuatika 20 (1): 50-60. DOI: 10.20884/1.oa.2024.20.1.1140.
Siregar AS, Sinaga TP, Setijanto. 2001. Studi ekologi fauna benthik (Macrobrachium spp) pada Sungai Banjaran, Pelus dan Logawa di Kabupaten Banyumas. Biosfera 3 (1): 1-6. [Indonesian]
Sokolow SH, Jones IJ, Jocque M, La D, Cords O, Knight A, Lund A, Wood CL, Lafferty KD, Hoover CM, Collender PA, Remais JV, Lopez-Carr D, Fisk J, Kuris AM, de Leo GA. 2017. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philos Trans R Soc B: Biol Sci 372 (1722): 20160127. DOI: 10.1098/rstb.2016.0127.
Taddei FG, Reis SDS, David FS, Da Silva TE, Fransozo V, Fransozo A. 2017. Population structure, mortality, and recruitment of Macrobrachium amazonicum (Heller, 1862) (Caridea: Palaemonidae) in the eastern Amazon region, Brazil. J Crustac Biol 37 (2): 131-141. DOI: 10.1093/jcbiol/rux006.
Ukagwu JI, Deekae S. 2016. Sex population structure of Macrobrachium felicinum and Macrobrachium vollenhovenii in the Akor river, Ibere Ikwuano, Abia State. Intl J Fish Aquat Stud 4 (4): 19-23.
Wowor D, Muthu V, Meier R, Balke M, Cai Y, Peter KLN. 2009. Evolution of life history traits in asian freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae) based on multilocus molecular phylogenetic analysis. Mol Phylogenet Evol 52 (2): 340-350. DOI: 10.1016/j.ympev.2009.01.002.

Most read articles by the same author(s)