The physicochemical composition of honey from Indonesian stingless bee (Tetragonula laeviceps)

##plugins.themes.bootstrap3.article.main##

AGUSSALIM
NAFIATUL UMAMI
NURLIYANI
ALI AGUS

Abstract

Abstract. Agussalim, Umami N, Nurliyani, Agus A. 2021. The physicochemical composition of honey from Indonesian stingless bee (Tetragonula laeviceps). Biodiversitas 22: 3257-3263. The demand of honey has recently increased significantly, but this situation is widely used by irresponsible humans who made a fake honey. This present study aims to evaluate the quality based on the physicochemical composition of honey from Indonesian stingless bee Tetragonula laeviceps. Honey was obtained from three geographical origins in Indonesia, i.e. Sleman, Gunungkidul, and Lombok. The physicochemical composition of honey was analyzed such as moisture, ash, protein, pH, glucose/moisture ratio, and electrical conductivity, and amino acids. The results showed that the geographical origins had a highly significant effect (P<0.01) on moisture, pH, and significant effect (P<0.05) on ash, electrical conductivity, protein, and glucose/moisture ratio. Honey from Indonesian stingless bee T. laeviceps was found 17 amino acids were arginine, histidine, lysine, phenylalanine, isoleucine, leucine, methionine, valine, threonine, tyrosine, proline, glutamic acid, aspartic acid, serine, alanine, glycine, and cysteine. The dominant amino acids of honey from Sleman were glutamic acid, histidine, lysine, and arginine. Honey from Lombok were glutamic acid, aspartic acid, lysine, and histidine. Furthermore, honey from Gunungkidul were lysine, arginine, histidine, and phenylalanine. Honey from Sleman and Lombok have the best quality than honey from Gunungkidul based on the chemical composition and amino acids profile.

##plugins.themes.bootstrap3.article.details##

References
Agus A, Agussalim, Nurliyani, Umami N, Budisatria IGS. 2019. Evaluation of antioxidant activity, phenolic, flavonoid and Vitamin C content of several honeys produced by the Indonesian stingless bee: Tetragonula laeviceps. Livest Res Rural Dev 31: #152.
Agussalim. 2015. Produksi Madu, Polen dan Propolis Lebah Trigona sp. Dalam Berbagai Desain Stup. [Tesis]. Universitas Gadjah Mada, Yogyakarta. [Indonesian].
Agussalim A, Agus A, Umami N, Budisatria IGS. 2018. The Type of Honeybees Forages in District of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Buletin Peternakan 42: 50-56. https://doi.org/10.21059/buletinpeternak.v42i1.28294.
Agussalim A, Agus A, Umami N, Budisatria IGS. 2017. Variation of Honeybees Forages As Source of Nectar and Pollen Based on Altitude in Yogyakarta. Buletin Peternakan 41: 448. https://doi.org/10.21059/buletinpeternak.v41i4.13593.
Agussalim, Agus A, Nurliyani, Umami N. 2019a. The sugar content profile of honey produced by the Indonesian Stingless bee, Tetragonula laeviceps, from different regions. Livest Res Rural Dev 31: #91.
Agussalim, Nurliyani, Umami N, Agus A. 2020. The honey and propolis production from Indonesian stingless bee: Tetragonula laeviceps. Livest Res Rural Dev 32: #121.
Alvarez-Suarez JM, Giampieri F, Brenciani A, Mazzoni L, Gasparrini M, González-Paramás AM, Santos-Buelga C, Morroni G, Simoni S, Forbes-Hernández TY, Afrin S, Giovanetti E, Battino M. 2018. Apis mellifera vs Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. LWT - Food Sci Technol 87: 272-279. https://doi.org/10.1016/j.lwt.2017.08.079.
AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C.
Belay A, Haki GD, Birringer M, Borck H, Lee YC, Kim KT, Baye K, Melaku S. 2017. Enzyme activity, amino acid profiles and hydroxymethylfurfural content in Ethiopian monofloral honey. J Food Sci Technol 54: 2769-2778. https://doi.org/10.1007/s13197-017-2713-6.
Biluca FC, Bernal J, Valverde S, Ares AM, Gonzaga LV, Costa ACO, Fett R. 2019. Determination of free amino acids in stingless bee (Meliponinae) honey. Food Anal. Methods 12: 902-907. https://doi.org/10.1007/s12161-018-01427-x.
Biluca FC, Braghini F, Gonzaga LV, Costa ACO, Fett R. 2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J Food Compos Anal 50: 61-69. https://doi.org/10.1016/j.jfca.2016.05.007.
Bogdanov S, Lüllmann C, Martin P, von der Ohe W, Russmann H, Vorwohl G, Oddo LP, Sabatini AG, Marcazzan GL, Piro R, Flamini C, Morlot M, Lhéritier J, Borneck R, Marioleas P, Tsigouri A, Kerkvliet J, Ortiz A, Ivanov T, D’Arcy B, Mossel B, Vit P. 1999. Honey quality and international regulatory standards: Review by the international honey commission. Bee World 80: 61-69. https://doi.org/10.1080/0005772x.1999.11099428.
Bogdanov S, Ruoff K, Oddo, LP. 2004. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 35: 71-81. https://doi.org/10.1051/apido.
Chuttong B, Chanbang Y, Sringarm K, Burgett M. 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem 192: 149-155. https://doi.org/10.1016/j.foodchem.2015.06.089.
Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.
Dobre I, Georgescu LA, Alexe P, Escuredo O, Seijo MC. 2012. Rheological behavior of different honey types from Romania. Food Res Int 49: 126-132. https://doi.org/10.1016/j.foodres.2012.08.009.
Erwan, Astuti M, Syamsuhaidi, Muhsinin M, Agussalim. 2020. The effect of different beehives on the activity of foragers, honey potsnumber and honey production from stingless bee Tetragonula sp. Livest Res Rural Dev 32: #158.
Erwan, Suhardin, Syamsuhaidi, Purnamasari DK, Muhsinin M, Agussalim. 2021. Propolis mixture production and foragers daily activity of stingless bee Tetragonula sp. in bamboo and box hives. Livest Res Rural Dev 33: #82.
Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
Guerrini A, Bruni R, Maietti S, Poli F, Rossi D, Paganetto G, Muzzoli M, Scalvenzi L, Sacchetti G. 2009. Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chem 114: 1413-1420. https://doi.org/10.1016/j.foodchem.2008.11.023.
Hermosín I, Chicón RM, Cabezudo MD. 2003. Free amino acid composition and botanical origin of honey. Food Chem 83: 263-268. https://doi.org/10.1016/S0308-8146(03)00089-X.
Iglesias MT, Martín-Álvarez PJ, Polo MC, De Lorenzo C, González M, Pueyo E. 2006. Changes in the free amino acid contents of honeys during storage at ambient temperature. J Agric Food Chem 54: 9099-9104. https://doi.org/10.1021/jf061712x.
Kahono S, Chantawannakul P, Engel MS. 2018. Social Bees and the Current Status of Beekeeping in Indonesia, in: Chantawannakul, P., Williams, G., Neumann, P. (Eds.), Asian Beekeeping in the 21st Century. Springer, Singapore, pp. 287-306.
Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
Ke?keš J, Trifkovi? J, Andri? F, Joveti? M, Teši? Ž, Milojkovi?-Opsenica D. 2013. Amino acids profile of Serbian unifloral honeys. J Sci Food Agric 93: 3368-3376. https://doi.org/10.1002/jsfa.6187.
Kowalski S, Kopuncová M, Ciesarová Z, Kukurová K. 2017. Free amino acids profile of Polish and Slovak honeys based on LC-MS/MS method without the prior derivatisation. J Food Sci Technol 54: 3716-3723. https://doi.org/10.1007/s13197-017-2838-7.
Manzanares AB, García ZH, Galdón BR, Rodríguez ER, Romero CD. 2014. Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT - Food Sci Technol 55: 572-578. https://doi.org/10.1016/j.lwt.2013.09.024.
Oddo LP, Heard TA, Rodríguez-Malaver A, Pérez RA, Fernández-Muiño M, Sancho MT, Sesta G, Lusco L, Vit P. 2008. Composition and antioxidant activity of Trigona carbonaria honey from Australia. J Med Food 11: 789-794. https://doi.org/10.1089/jmf.2007.0724.
Piazza MG, Accorti M, Oddo LP. 1991. Electrical conductivity, ash, color, and specific rotatory power in Italian unifloral honeys. Apicoltura 7: 51-63.
Ranneh Y, Ali F, Zarei M, Akim AM, Hamid HA, Khazaai H. 2018. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT - Food Sci Technol 89: 1-9. https://doi.org/10.1016/j.lwt.2017.10.020.
Rebane R, Herodes K. 2010. A sensitive method for free amino acids analysis by liquid chromatography with ultraviolet and mass spectrometric detection using precolumn derivatization with diethyl ethoxymethylenemalonate: Application to the honey analysis. Anal Chim Acta 672: 79-84. https://doi.org/10.1016/j.aca.2010.04.014.
Ribeiro RDOR, Mársico ET, Carneiro CDS, Monteiro MLG, Júnior CC, Jesus EFO De. 2014. Detection of honey adulteration of high fructose corn syrup by Low Field Nuclear Magnetic Resonance (LF 1H NMR). J Food Eng 135: 39-43. https://doi.org/10.1016/j.jfoodeng.2014.03.009.
Sabir A, Agus A, Sahlan M, Agussalim. 2021. The minerals content of honey from stingless bee Tetragonula laeviceps from different regions in Indonesia. Livest Res Rural Dev 33: #22.
Sak-Bosnar M, Saka? N. 2012. Direct potentiometric determination of diastase activity in honey. Food Chem 135: 827-831. https://doi.org/10.1016/j.foodchem.2012.05.006.
SNI. 2018. Standar nasional Indonesia madu. Badan Standarisasi Nasional, Jakarta.
Souza B, Roubik D, Barth O, Heard T, Enriquez E, Carvalho C, Villas-Boas J, Marchini L, Locatelli J, Persano-Oddo L, Almeida-Muradian L, Bogdanov S, Vit P. 2006. Composition of stingless bee honey: Setting quality standards. Interciencia 31: 867-875.
Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. 2002. Rapid determination of minority organic acids in honey by high-performance liquid chromatography. J Chromatogr A 955: 207-214. https://doi.org/10.1016/S0021-9673(02)00248-0.
Sun Z, Zhao L, Cheng N, Xue X, Wu L, Zheng J, Cao W. 2017. Identification of botanical origin of Chinese unifloral honeys by free amino acid profiles and chemometric methods. J Pharm Anal 7: 317-323. https://doi.org/10.1016/j.jpha.2017.06.009.
Suntiparapop K, Prapaipong P, Chantawannakul P. 2012. Chemical and biological properties of honey from Thai stingless bee (Tetragonula leaviceps). J Apic Res 51: 45-52. https://doi.org/10.3896/IBRA.1.51.1.06.
Trianto M, Purwanto H. 2020. Morphological characteristics and morphometrics of stingless bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia. Biodiversitas 21: 2619-2628. https://doi.org/10.13057/biodiv/d210633.
Truzzi C, Annibaldi A, Illuminati S, Finale C, Scarponi G. 2014. Determination of proline in honey: Comparison between official methods, optimization and validation of the analytical methodology. Food Chem 150: 477-481. https://doi.org/10.1016/j.foodchem.2013.11.003.

Most read articles by the same author(s)