Antagonistic activity of glucanolytic bacteria Bacillus subtilis W3.15 against Fusarium oxysporum and its enzyme characterization

##plugins.themes.bootstrap3.article.main##

RURY ERYNA PUTRI
NISA RACHMANIA MUBARIK
LAKSMI AMBARSARI
ARIS TRI WAHYUDI

Abstract

Abstract. Putri RE, Mubarik NR, Ambarsari L, Wahyudi AT. 2021. Antagonistic activity of glucanolytic bacteria Bacillus subtilis W3.15 against Fusarium oxysporum and its enzyme characterization. Biodiversitas 22: 4067-4077. Biocontrol of Fusarium oxysporum, a phytopathogenic fungus that causes plant wilt can be approached with cell-wall degrading enzymes such as ?-glucanase. The aim of this study was to evaluate the prospective ability in glucanase production from several soil bacterial isolates and to characterize its ?-glucanase activity of ammonium sulfate precipitation, and to determine its antifungal activity against F. oxysporum in vitro. Twenty bacterial isolates were screened qualitatively and quantitatively as ?-glucanase producers. The results showed that the prospective isolate W3.15 can produce ?-glucanase on glucan agar as the selection medium. From 16S rRNA sequences identification, the isolate belongs to the genus Bacillus, closely related to Bacillus subtilis. The enzyme activity of the ammonium sulfate fraction of isolate W3.15 is optimum at a pH of 7 and temperature range of 60-80oC. B. subtilis W3.15 exhibits high inhibition against the mycelial growth of F. oxysporum and significantly reduced fungal biomass.

##plugins.themes.bootstrap3.article.details##

References
Abo-Elyousr KAM, Mohamed HM (2009) Biological control of fusarium wilt in tomato by plant growth-promoting yeasts and rhizobacteria. Plant Pathol J 25(2):199–204. doi:10.5423/PPJ.2009.25.2.199.
Alamri S, Hashem M, Mostafa YS (2012) In vitro and in vivo biocontrol of soil-borne phytopathogenic fungi by certain bioagents and their possible mode of action. Biocontrol Sci 17(4):155–167. doi:10.4265/bio.17.155.
Amini J, Dzhalilov FS (2010) The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with fusarium wilt of tomato. J Plant Prot Res 50(2):172–178. doi:10.2478/v10045-010-0029-x.
Asha BM, Revathi M, Yadav A, Sakthivel N (2012) Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol 22(11):1501–1509. doi:10.4014/jmb.1202.02013.
Awan ZA, Shoaib A (2019) Combating early blight infection by employing Bacillus subtilis in combination with plant fertilizers. Curr Plant Biol 20:100125. doi:10.1016/j.cpb.2019.100125.
Baibakova EV, Nefedjeva EE, Suska-Malawska M, Wilk M, Sevriukova GA, Zheltobriukhov VF (2019) Modern fungicides: Mechanisms of action, fungal resistance and phytotoxic effects. Annu Res Rev Biol 32(3):1–16. doi:10.9734/arrb/2019/v32i330083.
Balhara M, Ruhil S, Dhankhar S, K. Chhillar A (2011) bioactive compounds hold up- Bacillus amyloliquefaciens as a potent bio-control agent. Nat Prod J 1(1):20–8.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
Chang WT, Chen YC, Jao CL (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour Technol 98(6):1224–1230. doi:10.1016/j.biortech.2006.05.005.
Chasanah E, Dini IR, Mubarik NR (2013) Characterization of PMP 0126Y cellulase enzyme from agar processing waste (in Bahasa Indonesia). JPB Perikan 8(2):103. doi:10.15578/jpbkp.v8i2.41.
Chávez-Ramírez B, Kerber-Díaz JC, Acoltzi-Conde MC, Ibarra JA, Vásquez-Murrieta MS, Estrada-de los Santos P (2020) Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Microbiol Res 230:126347. doi:10.1016/j.micres.2019.126347.
Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R, Hartmann A, Grosch R (2013) Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One 8(7):e68818. doi:10.1371/journal.pone.0068818.
Deng A, Wu J, Zhang Y, Zhang G, Wen T (2010) Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour Technol 101(18):7100–7106. doi:10.1016/j.biortech.2010.03.130.
Dewi RTK, Mubarik NR, Suhartono MT (2016) Medium optimization of ?-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates J Food Agric 28(2):116–125. doi:10.9755/ejfa.2015-05-195.
Dukare A, Paul S, Arambam A (2020) Isolation and efficacy of native chitinolytic rhizobacteria for biocontrol activities against Fusarium wilt and plant growth promotion in pigeon pea (Cajanus cajan L.). Egypt J Biol Pest Control 30(1):56. doi:10.1186/s41938-020-00256-7.
El-Bendary MA, Hamed HA, Moharam ME (2016) Potential of Bacillus isolates as bio-control agents against some fungal phytopathogens. Biocatal Agric Biotechnol 5:173–178. doi:10.1016/j.bcab.2016.02.001.
Elanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, Karthikeyan G (2018) Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 103:92–101. doi:10.1016/j.pmpp.2018.05.008.
Falcão VCA, Ono MA, de Ávila Miguel T, Vizoni E, Hirooka EY, Ono EYS (2011) Fusarium verticillioides: Evaluation of fumonisin production and effect of fungicides on in vitro inhibition of mycelial growth. Mycopathologia 171(1):77–84. doi:10.1007/s11046-010-9339-9.
Ferrer P (2006). Revisiting the Cellulosimicrobium cellulons yeast-lytic ?-1, 3-glucanases toolbox: A review. Microb Cell Fact 5:10. doi:10.1186/1475-2859-5-10.
Furtado GP, Ribeiro LF, Santos CR, Tonoli CC, De Souza AR, Oliveira RR, Murakami MT, Ward RJ (2011) Biochemical and structural characterization of a ?-1,3-1,4-glucanase from Bacillus subtilis 168. Process Biochem 46(5):1202–1206. doi:10.1016/j.procbio.2011.01.037.
Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J Microbiol 50(1):103–111. doi:10.1007/s12275-012-1343-y.
Haidar R, Roudet J, Bonnard O, Dufour MC, Corio-Costet MF, Fert M, Gautier T, Deschamps A, Fermaud M (2016) Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol Res 192:172–184. doi:10.1016/j.micres.2016.07.003.
Hendricks CW, Doyle JD, Hugley B (1995) A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl Environ Microbiol 61(5).
Huang X, Zhang N, Yong X, Yang X, Shen Q (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167(3):135–143. doi:10.1016/j.micres.2011.06.002.
Jankiewicz U, Brzezinska MS, Saks E (2012) Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. J Biosci Bioeng 113(1):30–35. doi:10.1016/j.jbiosc.2011.08.023.
Jiang CH, Liao MJ, Wang HK, Zheng MZ, Xu JJ, Guo JH (2018) Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol Control 126:147–157. doi:10.1016/j.biocontrol.2018.07.017.
Jiang CH, Yao XF, Mi DD, Li ZJ, Yang BY, Zheng Y, Qi YJ, Guo AH (2019) comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against fusarium wilt on watermelon. Front Microbiol 10:1–17. doi:10.3389/fmicb.2019.00652.
Karthik N, Binod P, Pandey A (2015) Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp. Bioresour Technol 188:195–201. doi:10.1016/j.biortech.2015.03.006.
Khan MS, Gao J, Chen X, Zhang M, Yang F, Du Y, Moe TS, Munir I, Xue J, Zhang X (2020) The endophytic bacteria Bacillus velezensis Lle-9, isolated from Lilium leucanthum, harbors antifungal activity and plant growth-promoting effects. J Microbiol Biotechnol 30(5):668–680. doi:10.4014/jmb.1910.10021.
Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Sanders ER, Kaplan D, Hirsch AM (2018) antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 9:2363. doi:10.3389/fmicb.2018.02363.
Kim DS, Chi WJ, Hong SK (2019) Molecular characterization of an endo-?-1,4-glucanase, CelAJ93, from the recently isolated marine bacterium, Cellulophaga sp. J9-3. Appl Sci 9(19):4061. doi:10.3390/app9194061.
Kim YT, Monkhung S, Lee YS, Kim KY (2019) Effects of Lysobacter antibioticus hs124, an effective biocontrol agent against Fusarium graminearum, on crown rot disease and growth promotion of wheat. Can J Microbiol 65(12):904–912. doi:10.1139/cjm-2019-0285.
Kuddus S, Ahmad IR (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Genet Eng Biotechnol 11(1):39–46. doi:10.1016/j.jgeb.2013.03.001.
Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499. doi:10.1016/j.micres.2012.05.002.
Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of ?-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb Technol 38(7):990–997. doi:10.1016/j.enzmictec.2005.08.030.
Liang TW, Chen YY, Pan PS, Wang SL (2014) Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. Int J Biol Macromol 63:8–14. doi:10.1016/j.ijbiomac.2013.10.027.
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64(2):795–799. doi:10.1128/aem.64.2.795-799.1998.
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi:10.1021/ac60147a030.
Moussa M, Ebrahim W, Kalscheuer R, Liu Z, Proksch P (2020) Co-culture of the bacterium Pseudomonas aeruginosa with the fungus Fusarium tricinctum induces bacterial antifungal and quorum sensing signaling molecules. Phytochem Lett 36:37–41. doi:10.1016/j.phytol.2020.01.013.
Moyes RB, Reynolds J, Breakwell DP (2009) Differential staining of bacteria: Gram stain. Curr Protoc Microbiol 15(1):A.3C.1-A.3C.8. doi:10.1002/9780471729259.mca03cs15.
Mutturi S, Ike M, Yamagishi K, Tokuyasu K (2020) Isolation, characterization, and application of thermotolerant Streptomyces sp. K5 for efficient conversion of cellobiose to chitinase using pulse- feeding strategy. Process Biochem 94:58–65. doi:10.1016/j.procbio.2020.04.009.
Nel B, Steinberg C, Labuschagne N, Viljoen A (2007) Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Crop Prot 26(4):697–705. doi:10.1016/j.cropro.2006.06.008.
Regmi S, Choi YS, Kim YK, Khan MM, Lee SH, Choi YH, Cho SS, Jin YY, Yoo JC, Suh JW (2020) Industrial attributes of ?-glucanase produced by Bacillus sp. CSB55 and its potential application as bio-industrial catalyst. Bioprocess Biosyst Eng 43(2):249–259. doi:10.1007/s00449-019-02221-7.
Roy A, Mahata D, Paul D, Korpole S, Franco OL, Mandal SM (2013) Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1. Front Microbiol 4:332. doi:10.3389/fmicb.2013.00332.
Schoffelmeer E, Klis F, Sietsma J, Cornelissen B (1999) The cell wall of Fusarium oxysporum. Fungal Genet Biol 27 (2-3):275–82. doi:10.1006/fgbi.1999.1153.
Senol M, Nadaroglu H, Dikbas N, Kotan R (2014) Purification of chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann Clin Microbiol Antimicrob 13(1):1–7. doi:10.1186/s12941-014-0035-3.
Suárez-Estrella F, Vargas-García C, López MJ, Capel C, Moreno J (2007) Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Prot 26(1):46–53. doi:10.1016/j.cropro.2006.04.003.
Suyotha W, Yano S, Itoh T, Fujimoto H, Hibi T, Tachiki T, Wakayama M (2014) Characterization of ?-1,3-glucanase isozyme from Paenibacillus glycanilyticus FH11 in a new subgroup of family 87 ?-1,3-glucanase. J Biosci Bioeng 118(4):378–385. doi:10.1016/j.jbiosc.2014.03.008.
Trinh THT, Wang SL, Nguyen VB, Tran MD, Doan CT, Vo TPK, Huynh Q V, Nguyen AD (2019) A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.). Res Chem Intermed 45(11):5309–5323. doi:10.1007/s11164-019-03971-5.
Wikandari PR, Suparmo S, Marsono Y, Rahayu ES (2012) Characterization of proteolytic lactic acid bacteria on bekasam (in Bahasa Indonesia). J Natur Indones 14(1):120. doi:10.31258/jnat.14.1.120-125.
Wu Z, Huang Y, Li Y, Dong J, Liu X, Li C (2019) Biocontrol of Rhizoctonia solani via induction of the defense mechanism and antimicrobial compounds produced by Bacillus subtilis SL-44 on pepper (Capsicum annuum L.). Front Microbiol 10:02676. doi:10.3389/fmicb.2019.02676.
Xu T, Zhu T, Li S (2016) ?-1,3-1,4-glucanase gene from Bacillus velezensis zj20 exerts antifungal effect on plant pathogenic fungi. World J Microbiol Biotechnol 32(2):1–9. doi:10.1007/s11274-015-1985-0.
Yu WQ, Zheng GP, Qiu DW, Yan FC, Liu WZ, Liu WX (2019) Paenibacillus terrae NK3-4: A potential biocontrol agent that produces ?-1,3-glucanase. Biol Control 129:92–101. doi:10.1016/j.biocontrol.2018.09.019.
Zhang Y, Xu J, Dong F, Liu X, Wu X, Zheng Y (2014) Response of microbial community to a new fungicide fluopyram in the silty-loam agricultural soil. Ecotoxicol Environ Saf 108:273–280. doi:10.1016/j.ecoenv.2014.07.018

Most read articles by the same author(s)

1 2 3 > >>