Characterization of endophytic bacterial isolates from oil palm (Elaeis guineensis) seedlings and ramets for their plant growth promoting potential

##plugins.themes.bootstrap3.article.main##

IDA AYU PUTU SURYANTI
MARIA INDAH PURNAMASARI
CAHYA PRIHATNA
IMAN RUSMANA
ARIS TRI WAHYUDI
ANTONIUS SUWANTO

Abstract

Abstract. Suryanti IAP, Purnamasari MI, Prihatna C, Rusmana I, Wahyudi AT, Suwanto A. 2024. Characterization of endophytic bacterial isolates from oil palm (Elaeis guineensis) seedlings and ramets for their plant growth-promoting potential. Biodiversitas 25: 3775-3788. Using sterile tissue culture to cultivate oil palm (Elaeis guineensis Jacq.) seedlings results in the loss of beneficial endophytic bacteria, which can lead to various growth issues, including abnormal flower development and reduced palm oil production. The study aimed to investigate the potential endophytic bacteria in oil palm seedlings and ramets that serve as plant growth promoters. This research began with isolating and characterizing bacterial isolates with plant growth-promoting traits, then identification using 16S rRNA gene sequencing. In vitro and in vivo growth tests were carried out to assess the prospects of these bacterial isolates. Seventeen bacterial isolates were successfully cultured from oil palm seedlings and ramets (seedlings from tissue culture), with 12 and 5 isolates, respectively, which displayed characteristics of plant growth-promoting bacteria: 88% could produce aminocyclopropane-1-carboxylate (ACC) deaminase, 18% exhibited nitrogen-fixing abilities, 47% demonstrated phosphate solubilization, and 12% were producers of indole-3-acetic acid (IAA) hormone, which. One of the isolates, designated as 3AK, was indicated as the Aeromonas genus, which originates from the environment and has all the plant growth-promoting properties tested qualitatively in this study. In vitro growth testing showed that 3AK isolate had the most significant average lengths for both shoots (4.4±0.4 cm) and roots (8.2±0.5 cm). In the greenhouse experiment (in vivo), the oil palm seedlings treated with bacteria, such as 3AK, exhibited differences in shoot and root dry weight compared to the control group, and the difference was statistically significant. These findings collectively indicate that endophytic bacteria code 3AK is isolated from oil palm root, identified as Aeromonas taiwanensis through 16S rRNA gene sequencing, and has the potential as a plant growth promoter. Inoculation of Aeromonas taiwanensis strain 3AK and PsJN as Burkholderia phytofirmans strain PsJN (already known as a model for promoting plant growth) was carried out for the first time on the growth of oil palm seedlings.

##plugins.themes.bootstrap3.article.details##

References
Ali SZ, Sandhya V, Venkateswar Rao L. 2014. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64 (2): 493-502. DOI: 10.1007/s13213-013-0680-3.
Alperi A, Martínez-Murcia AJ, Ko W-C, Monera A, Saavedra MJ, Figueras MJ. 2010. Aeromonas taiwanensis sp. nov. and Aeromonas sanarellii sp. nov., clinical species from Taiwan. Intl J Syst Evol Microbiol 60 (9): 2048-2055. DOI: 10.1099/ijs.0.014621-0.
Alsultan A, Elhadi N. 2022. Evaluation of ERIC-PCR method for determining genetic diversity among Escherichia coli isolated from human and retail imported frozen shrimp and beef. Intl J Food Contam 9 (1): 12. DOI: 10.1186/s40550-022-00098-1.
Amanta F, Nafisah N. 2022. Produktivitas kelapa sawit tetap terbatas seiring melonjaknya harga minyak goreng di Indonesia https://repository.cips-indonesia.org/media/publications/355798-produktivitas-kelapa-sawit-tetap-terbata-00cfbc21.pdf. [Indonesian]
Ariawan IWG, Suprapta DN, Suniti NW. 2015. Pemanfaatan Aeromonas hydrophila untuk mengendalikan penyakit layu Fusarium pada beberapa varietas sorgum manis (Sorghum bicolor (L.) Moench). Agroteknologi Tropika 4 (2): 81-92. [Indonesian]
Ayu E, Suwanto A, Barus T. 2014. Klebsiella pneumoniae from Indonesian tempeh were genetically different from that of pathogenic isolates. Microbiol Indonesia 8 (1): 9-15. DOI: 10.5454/mi.8.1.2.
Barger PC, Liles MR, Beck BH, Newton JC. 2021. Correction to: Differential production and secretion of potentially toxigenic extracellular proteins from hypervirulent Aeromonas hydrophila under biofilm and planktonic culture. BMC Microbiol 21 (1): 33. DOI: 10.1186/s12866-021-02088-3.
Barrett SCH. 2015. Influences of clonality on plant sexual reproduction. Proc Natl Acad Sci USA 112 (29): 8859-8866. DOI: 10.1073/pnas.1501712112.
Basiron Y. 2007. Palm oil production through sustainable plantations. Eur J Lipid Sci Technol 109 (4): 289-295. DOI: 10.1002/ejlt.200600223.
Bharudin I, Ab Wahab AFF, Abd Samad MA, Xin Yie N, Zairun MA, Abu Bakar FD, Abdul Murad AM. 2022. Review update on the life cycle, plant-microbe interaction, genomics, detection, and control strategies of the oil palm pathogen Ganoderma boninense. Biology 11 (2): 251. DOI: 10.3390/biology11020251.
Chen C, Wang M, Zhu J, Tang Y, Zhang H, Zhao Q, Jing M, Chen Y, Xu X, Jiang J, Shen Z. 2022. Long-term effect of epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. Microbiome10 (1): 36. DOI: 10.1186/s40168-022-01236-9.
Fasusi OA, Amoo AE, Babalola OO. 2021. Characterization of plant growth-promoting rhizobacterial isolates associated with food plants in South Africa. Antonie van Leeuwenhoek 114 (10): 1683-1708. DOI: 10.1007/s10482-021-01633-4.
Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF, Teixeira PJPL, Wilson ED, Fitzpatrick CR, Jones CD, Dangl JL. 2020. A single bacterial genus maintains root growth in a complex microbiome. Nature 587 (7832): 103-108. DOI: 10.1038/s41586-020-2778-7.
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, et al. 2021. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol 232: 973-1122. DOI: 10.1111/nph.17572.
Gholamalizadeh R, Khodakaramian G, Ebadi AA. 2017. Assessment of rice-associated bacterial ability to enhance rice seed germination and rice growth promotion. Braz Arch Biol Technol 60: e17160410. DOI: 10.1590/1678-4324-2017160410.
Gilligan PH. 2013. Identification of pathogens by classical clinical tests. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-30144-5_90.
Green M, Lima WAA, Figueiredo AFD, Atroch AL, Lopes R, Cunha RNVD, Teixeira PC. 2013. Heat-treatment and germination of oil palm seeds (Elaeis guineensis Jacq.). J Seed Sci 35 (3): 296-301. DOI: 10.1590/S2317-15372013000300004.
Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol 26 (1): 192-195. DOI: 10.1104/pp.26.1.192.
Gupta S, Pandey S. 2019. ACC Deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) Plants. Front Microbiol 10: 1506. DOI: 10.3389/fmicb.2019.01506.
Gupta S, Tanveer A, Dwivedi S, Yadav K, Morya VK, Yadav D. 2024. Isolation and characterization of Aeromonas taiwanensis strain for simultaneous production of cellulase, amylase, pectinase, and protease enzymes. Biosci Biotechnol Res Asia 21 (2): 655-670. DOI: 10.13005/bbra/3254.
Hajar T, Leshem YA, Hanifin JM, Nedorost ST, Lio PA, Paller AS, Block J, Simpson EL. 2015. A systematic review of topical corticosteroid withdrawal (steroid addiction) in patients with atopic dermatitis and other dermatoses. J Am Acad Dermatol 72 (3): 541-549. DOI: 10.1016/j.jaad.2014.11.024.
He D, Singh SK, Peng L, Kaushal R, Vílchez JI, Shao C, Wu X, Zheng S, Morcillo RJL, Paré PW, Zhang H. 2022. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME Multidisp J Microb Ecol 16 (11): 2622-2632. DOI: 10.1038/s41396-022-01288-7.
Hidayati E, Tri Wahyudi A, Suwanto A, Widyastuti R. 2014. Abundance of culturable bacteria isolated from maize rhizosphere soil using four different culture media. Microbiol Indonesia 8 (1): 33-40. DOI: 10.5454/mi.8.1.5.
Jazuli NA, Kamu A, Chong KP, Gabda D, Hassan A, Abu Seman I, Ho CM. 2022. A review of factors affecting Ganoderma basal stem rot disease progress in oil palm. Plants 11 (19): 2462. DOI: 10.3390/plants11192462.
Kabeer R, Varghese R, Sylas VP. 2018. Rhizosphere of water hyacinth as a niche for multidrug resistant Aeromonas taiwanensis and Paenibacillus taiwanensis: A study from a tropical wetland of South India. Rhizosphere 6: 20-22. DOI: 10.1016/j.rhisph.2018.01.007.
Kalbuadi DN, Darmawan, Pulunggono HB, Santi LP. 2024. Effect of beneficial microbes on macronutrient uptake and oil palm seedling growth in peat soil. IOP Conf Ser: Earth Environ Sci 1308 (1): 012029. DOI: 10.1088/1755-1315/1308/1/012029.
Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11 (3): e0152478. DOI: 10.1371/journal.pone.0152478.
Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P. 2020. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S Afr J Bot 134: 50-63. DOI: 10.1016/j.sajb.2020.02.017.
Lebrazi S, Niehaus K, Bednarz H, Fadil M, Chraibi M, Fikri-Benbrahim K. 2020. Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. J Genet Eng Biotechnol 18 (1): 71. DOI: 10.1186/s43141-020-00090-2.
Mahmood T, Mehnaz S, Fleischmann F, Ali R, Hashmi ZH, Iqbal Z. 2014. Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings. Pedobiologia 57 (3): 123-130. DOI: 10.1016/j.pedobi.2013.12.005.
Malik A, Wenuganen S, Suwanto A, Tjahjono B. 2003. Cloning, DNA sequence, and expression of Aeromonas caviae WS7b chitinase gene. Mol Biotechnol 23 (1): 1-10. DOI: 10.1385/MB:23:1:1.
Mayerni R, Warnita, Yuliatri, Rukmana S, Okta Sagita Chan. 2019. Effect of indigenous endophytic bacteria on growth of palm oil seedlings (Elaeis guineensis Jacq) in the nursery. IOP Conf Ser: Earth Environ Sci 347: 012026. DOI: 10.1088/1755-1315/347/1/012026.
Middleton H, Yergeau É, Monard C, Combier J-P, El Amrani A. 2021. Rhizospheric plant-microbe interactions: miRNAs as a key mediator. Trends Plant Sci 26: 132-141. DOI: 10.1016/j.tplants.2020.09.005.
Miotto-Vilanova L, Courteaux B, Padilla R, Rabenoelina F, Jacquard C, Clément C, Comte G, Lavire C, Ait Barka E, Kerzaon I, Sanchez L. 2019. Impact of Paraburkholderia phytofirmans PsJN on grapevine phenolic metabolism. Intl J Mol Sci 20 (22): 5775. DOI: 10.3390/ijms20225775.
Murphy DJ, Goggin K, Paterson RRM. 2021. Oil palm in the 2020s and beyond: Challenges and solutions. CABI Agric Biosci 2 (1): 39. DOI: 10.1186/s43170-021-00058-3.
Nawaz MS, Arshad A, Rajput L, Fatima K, Ullah S, Ahmad M, Imran A. 2020. Growth-stimulatory effect of quorum sensing signal molecule n-acyl-homoserine lactone-producing multi-trait Aeromonas spp. on wheat genotypes under salt stress. Front Microbiol 11: 553621. DOI: 10.3389/fmicb.2020.553621.
Nwigwe C, Fossey A, De Smidt O. 2023. Effects of plant growth promoting rhizospheric bacteria (PGPR) on survival, growth and rooting architecture of Eucalyptus hybrid clones. Forests 14 (9): 1848. DOI: 10.3390/f14091848.
Om AC, Ghazali AHA, Keng CL, Ishak Z. 2009. Microbial inoculation improves growth of oil palm plants (Elaeis guineensis Jacq.). Trop Life Sci Res 20 (2): 71-77.
Paterson RRM. 2020. Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environ Sci 7 (5): 366-379. DOI: 10.3934/environsci.2020024.
Prihatna C, Pramudito TE, Arifin AR, Nguyen TKN, Purnamasari MI, Suwanto A. 2022. Antifungal peptides from a Burkholderia strain suppress basal stem rot disease of oil palm. Phytopathology 112 (2): 238-248. DOI: 10.1094/PHYTO-11-20-0529-R.
Rival A, Ilbert P, Labeyrie A, Torres E, Doulbeau S, Personne A, Dussert S, Beulé T, Durand-Gasselin T, Tregear JW, et al. 2013. Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep 32 (3): 359-368. DOI: 10.1007/s00299-012-1369-y.
Santiago CD, Yagi S, Ijima M, Nashimoto T, Sawada M, Ikeda S, Asano K, Orikasa Y, Ohwada T. 2017. Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microb Environ 32 (1): 14-23. DOI: 10.1264/jsme2.ME16127.
Sarkar MdSK, Begum RA, Pereira JJ. 2020. Impacts of climate change on oil palm production in Malaysia. Environ Sci Pollut Res 27 (9): 9760-9770. DOI: 10.1007/s11356-020-07601-1.
Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Intl J Syst Evol Microbiol 55 (3): 1187-1192. DOI: 10.1099/ijs.0.63149-0.
Silambarasan S, Abraham J. 2020. Biodegradation of carbendazim by a potent novel Chryseobacterium sp. JAS14 and plant growth promoting Aeromonas caviae JAS15 with subsequent toxicity analysis. 3 Biotech 10 (7): 326. DOI: 10.1007/s13205-020-02319-w.
Sime-Ngando T. 2015. Aeromonas: A book review. Front Microbiol 6: 106. DOI: 10.3389/fmicb.2015.00106.
Sondang Y, Muflihayati, Anty K, Siregar R. 2023. The effect of functional bacterial consortium on nutrient content of liquid organic. IOP Conf Ser: Earth Environ Sci 1160 (1): 012079. DOI: 10.1088/1755-1315/1160/1/012079.
Syafiq TH, Nusaibah SA, Rafii MY. 2021. Effectiveness of bioinoculants Bacillus cereus and Trichoderma asperellum as oil palm seedlings growth promoters. Pertanika J Trop Agric Sci 44 (1): 157-170. DOI: 10.47836/pjtas.44.1.09.
Tabacchioni S, Passato S, Ambrosino P, et al. 2021. Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorganisms 9 (2): 426. DOI: 10.3390/microorganisms9020426.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30 (12): 2725-2729. DOI: 10.1093/molbev/mst197.
Wang J, Li R, Zhang H, Wei G, Li Z. 2020. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol 20 (1): 38. DOI: 10.1186/s12866-020-1708-z.
Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B. 2021. Beneficial relationships between endophytic bacteria and medicinal plants. Front Plant Sci 12: 646146. DOI: 10.3389/fpls.2021.646146.
Yan X-L, Ma X. 2021. Responses of root morphology and seedling growth in three tree species to heterogeneous supplies of ammonium and nitrate. For Ecol Manag 479: 118538. DOI: 10.1016/j.foreco.2020.118538.
Yarra R, Jin L, Zhao Z, Cao H. 2019. Progress in tissue culture and genetic transformation of oil palm: An overview. Intl J Mol Sci 20 (21): 5353. DOI: 10.3390/ijms20215353.
Zarei T, Moradi A, Kazemeini SA, Akhgar A, Rahi AA. 2020. The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. var saccharata) productivity under limited availability of irrigation water. Sci Rep 10 (1): 20361. DOI: 10.1038/s41598-020-77305-6.
Zhang J, Cook J, Nearing JT, Zhang Junzeng, Raudonis R, Glick BR, Langille MGI, Cheng Z. 2021. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 245: 126690. DOI: 10.1016/j.micres.2020.126690.

Most read articles by the same author(s)

1 2 3 4 > >>