Species diversity of seagrass-associated bivalves as an ecological parameter to support seagrass conservation along with the Coastal Waters of South Lombok, Indonesia




Abstract. Syukur A, Zulkifli L, Idrus AA, Hidayati BN. 2021. Species diversity of seagrass-associated bivalves as an ecological parameter to support seagrass conservation along with the Coastal Waters of South Lombok, Indonesia. Biodiversitas 22: 5133-5144. Seagrass has a role in supporting the survival of marine life, such as bivalves. This study aimed to investigate the relationship between bivalve species diversity as a parameter for seagrass conservation. The research approach was through observation and data collection for seagrass and bivalves using quadrant and transect methods—Analysis of the data through descriptive statistical analysis, ANOVA, and Pearson correlation. The number of seagrass species in the six research sites was nine. Furthermore, the species composition of bivalves consisted of 11 families comprising 47 species. The ANOVA results showed a significant difference based on the F-count value, higher than the F-table value of the three ecological indices (H', E, and Ki). Two ecological indices, namely H' and Ki, have r values ??less than 0.5 for all environmental parameters (temperature, brightness, pH, salinity, DO, phosphate, and nitrate) and show no significant correlation. However, the E index value has an r value greater than 0.5 for nitrate, salinity DO, and phosphate. The highest significance value of the four environmental variables is for nitrate, with an r = 0.875. The conclusion is that the richness and abundance of seagrass-associated bivalves in the study area are predetermined by the characteristics of the seagrass environment, especially the substrate. Secondly, seagrasses could create a suitable substrate for bivalves to survive. Therefore, the indicator of the presence of associated Bivalvia species can be a parameter for local scale seagrass conservation at the study site.


Abele, D., Brey, T., & Philipp, E. (2009). Bivalve models of aging and the determination of molluscan lifespans. Experimental gerontology , 44 (5), 307-315. https://doi.org/10.1016/j.exger.2009.02.012
Altamirano, J. P., Recente, C. P., & Rodriguez Jr, J. C. (2017). Substrate preference for burying and feeding of sandfish Holothuria scabra juveniles. Fisheries Research, 186, 514-523. https://doi.org/10.1016/j.fishres.2016.08.011
Bateman, DC, & Bishop, MJ (2017). The environmental context and traits of habitat - forming bivalves influence the magnitude of their ecosystem engineering. Marine Ecology Progress Series , 563 , 95-110. DOI: https://doi.org/10.3354/meps11959
Best, MM, & Kidwell, SM (2016). Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types. Paleobiology , 26 (1), 103-115. DOI: https://doi.org/10.1666/0094-8373(2000)026<0080:BTITMS>2.0.CO;2
Bódis, E., Nosek, J., Oertel, N., Tóth, B., Hornung, E., & Sousa, R. (2011). Spatial distribution of bivalves in relation to environmental conditions (middle Danube catchment, Hungary). Community Ecology , 12 (2), 210- 219. DOI:
Braby, CE, & Somero, GN (2006). Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). Journal of Experimental Biology , 209 (13), 2554-2566. https://doi.org/10.1242/jeb.02259
Bromley, R. G., & Heinberg, C. (2006). Attachment strategies of organisms on hard substrates: a palaeontological view. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4), 429-453. https://doi.org/10.1016/j.palaeo.2005.07.007
Brumbaugh, RD, & Coen, LD (2009). Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. Journal of Shellfish Research , 28 (1), 147-161. https://doi.org/10.2983/035.028.0105
Byers, JE, Cuddington, K., Jones, CG, Talley, TS, Hastings, A., Lambrinos, JG, & Wilson, WG (2006). Using ecosystem engineers to restore ecological systems. Trends in ecology & evolution , 21 (9), 493-500. https://doi.org/10.1016/j.tree.2006.06.002
Chadwick, MA, Dobberfuhl, DR, Benke, AC, Huryn, AD, Suberkropp, K., & Thiele, JE (2006). Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecological Applications , 16 (5), 1796-1807. https://doi.org/10.1890/1051-0761(2006)016[1796:UASEFB]2.0.CO;2
Champion, C., Hobday, AJ, Pecl, GT, & Tracey, SR (2020). Oceanographic habitat suitability is positively correlated with the body condition of a coastal - pelagic fish. Fisheries Oceanography , 29 (1), 100-110. https://doi.org/10.1111/fog.12457
Chin, D. W., de Fouw, J., van der Heide, T., Cahill, B. V., Katcher, K., Paul, V. J., ... & Peterson, B. J. (2020). Facilitation of a tropical seagrass by a chemosymbiotic bivalve increases with environmental stress, Journal of Ecology : 7-22. https://doi.org/10.1111/1365-2745.13462.
Crame, JA (2000). Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas. Paleobiology , 26 (2), 188-214. DOI: https://doi.org/10.1666/0094-8373(2000)026<0188:EOTDGI>2.0.CO;2
de Souza Machado, AA, Kloas, W., Zarfl, C., Hempel, S., & Rillig, MC (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global change biology , 24 (4), 1405-1416. https://doi.org/10.1111/gcb.14020
Deutsch, L., Troell, M., Limburg, K., & Huitric, M. (2011). Global trade of fisheries products: implications for marine ecosystems and their services. Ecosystem services and global trade of natural resources , 120-147. https://www.taylorfrancis.com/chapters/edit/10.4324/9780203816639-18
Duniway, M. C., Bestelmeyer, B. T., & Tugel, A. (2010). Soil processes and properties that distinguish ecological sites and states. Rangelands, 32(6), 9-15. https://doi.org/10.2111/RANGELANDS-D-10-00090.1
Esqueda, MDC, Ríos-Jara, E., Michel-Morfín, JE, & Landa-Jaime, V. (2000). The vertical distribution and abundance of gastropods and bivalves from rocky beaches of Cuastecomate Bay, Jalisco. México. Revista de Biología Tropical , 48 (4), 765-775. https://www.scielo.sa.cr/scielo.php?pid=S0034-77442000000400004&script=sci_arttext
Feng, X., & Pape?, M. (2017). Physiological limits in an ecological niche modeling framework: A case study of water temperature and salinity constraints of freshwater bivalves invasive in USA. Ecological Modeling , 346, 48-57.
Gagnon, K., Rinde, E., Bengil, E. G., Carugati, L., Christianen, M. J., Danovaro, R., ... & Pajusalu, L. (2020). Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. Journal of Applied Ecology, 57, 1161-1179. https://doi.org/10.1111/1365-2664.13605
Gingras, MK, Pemberton, SG, & Saunders, T. (2001). Bathymetry, sediment texture, and substrate cohesiveness; their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington. Palaeogeography, Palaeoclimatology, Palaeoecology , 169 (1-2), 1-21. https://doi.org/10.1016/j.ecolmodel.2016.11.008
Harley, JF, Carvalho, L., Dudley, B., Heal, KV, Rees, RM, & Skiba, U. (2015). Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary. Estuarine, Coastal and Shelf Science , 153 , 62-73. https://doi.org/10.1016/j.ecss.2014.12.004
Hosack, GR, Dumbauld, BR, Ruesink, JL, & Armstrong, DA (2006). Habitat associations of estuarine species: comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats. Estuaries and Coasts , 29 (6), 1150-1160. https://doi.org/10.1007/BF02781816
Hyrenbach, KD, Fernández, P., & Anderson, DJ (2002). Oceanographic habitats of two sympatric North Pacific albatrosses during the breeding season. Marine Ecology Progress Series , 233 , 283-301. http://doi:10.3354/meps233283
Idrus, A. A., Syukur, A., & Zulkifli, L. (2019a). The diversity of fauna in mangrove community: Success replanting of mangroves species in South Coastal East Lombok, Indonesia. In Journal of Physics: Conference Series (Vol. 1402, No. 3, p. 033042). IOP Publishing. http://doi:10.1088/1742-6596/1402/3/033042
Irawan, H. (2014). Studi Biologi Dan Ekologi Hewan Filum Mollusca Di Zona Litoral Pesisir Timur Pulau Bintan. Dinamika Maritim, 4(1), 10-26.
Lazo, DG (2004). Bivalve taphonomy: testing the effect of life habits on the shell condition of the littleneck clam Protothaca (Protothaca) staminea (Mollusca: Bivalvia). Palaios , 19 (5), 451-459. https://doi.org/10.1669/0883-1351(2004)019<0451:BTTTEO>2.0.CO;2
Lebreton, B., Richard, P., Galois, R., Radenac, G., Brahmia, A., Colli, G., ... & Blanchard, G. F. (2012). Food sources used by sediment meiofauna in an intertidal Zostera noltii seagrass bed: a seasonal stable isotope study. Marine Biology, 159(7), 1537-1550. https://doi.org/10.1007/s00227-012-1940-7
Lee, S. W., Park, S. Y., Kim, Y., Im, H., & Choi, J. (2016). Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius. Science of The Total Environment, 553, 565-573. https://doi.org/10.1016/j.scitotenv.2016.02.064
Liu, S., Jiang, Z., Zhang, J., Wu, Y., Huang, X.,& Macreadie, P. (2017). Sediment microbes mediate the impact of nutrient loading on blue carbon sequestration by mixed seagrass meadows. Scince of the total environment, 599, 1479-1484. https://doi.org/10.1016/j.scitotenv.2017.05.129
Lowery, JL, Paynter Jr, KT, Thomas, J., & Nygard, J. (2007). The importance of habitat created by molluscan shellfish to managed species along the Atlantic Coast of the United States. Washington, DC: Atlantic States Marine Fisheries Commission. https://cues.rutgers.edu/oyster-restoration/pdfs/HMS8ShellfishHabitat07.pdf
Lu, Y., Yuan, J., Lu, X., Su, C., Zhang, Y., Wang, C., ... & Garbutt, R. A. (2018). Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environmental Pollution, 239, 670-680. https://doi.org/10.1016/j.envpol.2018.04.016
LukeNeDer, A. (2008). The ecological significance of solitary coral and bivalve epibionts on Lower Cretaceous (Valangianian – Aptian) ammonoids from the Italian Dolomites. Acta Geologica Polonica , 58 (4), 425-436. https://geojournals.pgi.gov.pl/agp/article/view/9944
Lukwambe, B., Nicholaus, R., Zhao, L., Yang, W., Zhu, J., & Zheng, Z. (2020). Microbial community and interspecies interaction during grazing of ark shell bivalve (Scapharca subcrenata) in a full-scale bioremediation system of mariculture effluents. Marine Environmental Research, 104956. https://doi.org/10.1016/j.marenvres.2020.104956
Matozzo, V., Chinellato, A., Munari, M., Finos, L., Bressan, M., & Marin, MG (2012). First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PloS one , 7 (3), e33820. https://doi.org/10.1371/journal.pone.0033820
McLachlan, A., & Dorvlo , A. (2005). Global patterns in sandy beach macrobenthic communities. Journal of Coastal Research, 674-687. https://doi.org/10.2112/03-0114.1
McPherson, CA, & Chapman, PM (2000). Copper effects on potential sediment test organisms: the importance of appropriate sensitivity. Marine Pollution Bulletin , 40 (8), 656-665. https://doi.org/10.1016/S0025-326X(00)00043-6
Nicholson, S., & Lam, MCC (2005). Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). Environment International , 31 (1), 121-132. https://doi.org/10.1016/j.envint.2004.05.007Ge
Nordlund, L. M., & Gullström, M. (2013). Biodiversity loss in seagrass meadows due to local invertebrate fisheries and harbour activities. Estuarine, Coastal and Shelf Science, 135, 231-240. https://doi.org/10.1016/j.ecss.2013.10.019.
Nordlund, M, L., Koch, E. W., Barbier, E. B., & Creed, J. C. (2016). Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One, 11(10), e0163091. https://doi.org/10.1371/journal.pone.0163091
Odum , E. P. 1998 . Ecology Basics. Translated from Fundamental of Ecology by T. Samingan Gadjah Mada University Press. Yogyakarta.
Odum, E. P. 1993. Basics of Ecology Third Edition . Samingan, T (translator). Yogyakarta: Gadjah Mada University Press.
Patty, S,I. 2013. Distribution of Temperature, Salinity and Dissolved Oxygen in Kema Waters. North Sulawesi. Platax Scientific Journal. 1 (3): 148 - 157.
Santhanam, R. (2018). Biology and ecology of edible marine bivalve molluscs . CRC Press.
Schneider, KR, & Helmuth, B. (2007). Spatial variability in habitat temperature may drive patterns of selection between an invasive and native mussel species. Marine Ecology Progress Series,339 , 157-167. http://doi:10.3354/meps339157
Short, F., Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology , 350 (1-2), 3-20. http://doi.org/10.1016/j.jembe.2007.06.012
Sousa, R., Gutiérrez, JL, & Aldridge, DC (2009). Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions , 11 (10), 2367-2385. https://doi.org/10.1007/s10530-009-9422-7
Syachruddin, A. R., Syukur, S., Suryaningsih, S., Rahmawati, R., & Khan, A. L. (2018). Effect of Shell Color and Nursery Depth on the Growth of Pearl Oyster Pinctada Maxima in Tekalok West Nusa Tenggara IndonesiaEffect of Shell Color and Nursery Depth on the Growth of Pearl Oyster Pinctada Maxima in Tekalok West Nusa Tenggara Indonesia. Indonesian Journal of Science and Technology, 3(2), 105-114. DOI: https://doi.org/10.17509/ijost.v3i2.12754
Syukur, A., Al-Idrus, A., & Zulkifli, L. (2020). Ecotourism development based on the diversity of echinoderms species in seagrass beds on the south coastal of Lombok island, Indonesia. Journal of Environmental Science and Technology, 13(2), 57-68. http://doi.10.3923/jest.2020.57.68
Syukur, A., Idrus, A. A. I., & Zulkifli, L. (2021a). Seagrass-associated fish species’ richness: evidence to support conservation along the south coast of Lombok Island, Indonesia. Biodiversitas Journal of Biological Diversity, 22(2), 988-998. DOI https://doi.org/10.13057/biodiv/d220255.
Syukur, A., Hidayati, B. N., Idrus, A., & Zulkifli, L. (2021b). The suitability of seagrass ecological function for the survival of the bivalvia on the East Coast of Lombok, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 712, No. 1, p. 012033). IOP Publishing. http://doi.10.1088/1755-1315/712/1/012033
Unsworth, R. K., & Butterworth, E. G. (2021). Seagrass Meadows Provide a Significant Resource in Support of Avifauna. Diversity, 13(8), 1-10. https://doi.org/10.3390/d13080363
Vermeij, GJ (2017). Shell features associated with the sand-burying habit in gastropods. Journal of Molluscan Studies, 83 (2), 153-160. https://doi.org/10.1093/mollus/eyx001
Wainwright, B. J., Zahn, G. L., Arlyza, I. S., & Amend, A. S. (2018). Seagrass-associated fungal communities follow Wallace’s line, but host genotype does not structure fungal community. Journal of Biogegraphy, 45(4), 762-770. https://doi.org/10.1111/jbi.13168