Biosurfactant activity of indigenous Bacillus sp. ES4.3 isolated from endemic breeding sites of dengue hemorrhagic fever vector in Surabaya, East Java, Indonesia Biosurfactant Activity Bacillus sp. ES4.3 Indonesia

##plugins.themes.bootstrap3.article.main##

FARAH AISYAH NAFIDIASTRI
RIZKY DANANG SUSETYO
TRI NURHARIYATI
AGUS SUPRIYANTO
ALMANDO GERALDI
NI’MATUZAHROH
FATIMAH
SALAMUN

Abstract

Abstract. Nafidiastri FA, Susetyo RD, Nurhariyati T, Supriyanto A, Geraldi A, Ni’matuzahroh, Fatimah, Salamun. 2021. Biosurfactant activity of indigenous Bacillus sp. ES4.3 isolated from endemic breeding sites of dengue hemorrhagic fever vector in Surabaya, East Java, Indonesia. Biodiversitas 22: 5375-5381. Bacillus spp. have shown the ability to results a variety of commercial bioactive compounds such as proteins, peptides, and lipopeptides (LPs). Some of the LPs produced by Bacillus spp. are surfactin, iturin, and fengicin. This study aimed to determine the name of the indigenous Bacillus sp. ES4.3, the biosynthesis surfactin gene, and the potential activity for biosurfactant produced by entomopathogenic Bacillus sp. ES4.3 isolated from endemic breeding sites of ??Dengue Hemorrhagic Fever Vector in Surabaya, East Java, Indonesia. Genomic DNA of Bacillus sp. ES4.3 was detected by isolating the DNA and visualizing it by electrophoresis. Furthermore, the 16S rRNA gene was amplified by the Polymerase Chain Reaction (PCR) method. The resulting nucleotide sequences were analyzed to find the relationship between Bacillus sp ES4.3 with another bacteria using MEGA version 6 software. Detection of biosynthesis surfactin gene was carried out by PCR method using srfAD primers. Analysis of the homology level of the surfactin gene was performed using the NCBI BLASTn and BLASTp genetic analysis program. The indigenous Bacillus sp. ES4.3 had 97.66% closeness to the species Bacillus velezensis FZB42 and the surfactin gene showed a 100% ID with the surfactin biosynthesis thioesterase SrfA-D gene on the Bacillus amyloliquefaciens group. The biosurfactant activity was indicated by the formation of clear zones, emulsions, and a decrease in surface tension in the values ??of 21.38 mN/m from the NB medium control and 33.74 mN/m from the distilled water control. The ability of B. velezensis ES4.3 to hemolyzed and reduce surface tension indicated the presence of biosurfactant that can disrupt stability and damage the midgut of Aedes aegypti. Thus, B. velezensis ES4.3 has the potential to be developed as a biocontrol in disease vectors.

##plugins.themes.bootstrap3.article.details##

References
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. DOI: 10.1093/nar/25.17.3389
Arifiyanto A, Surtiningsih T, Ni'matuzahroh, Fatimah, Agustina D, Alami NH. 2020. Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatalysis and Agricultural Biotechnology. 24: 101513. DOI: https://doi.org/10.1016/j.bcab.2020.101513
Ausubel FM, Brent R, Kingston RR, Moore, DD, Seidman JG, Smith JA, Struhl K. 2003. Current Protocols in Molecular Biology. John Wiley & Sons, Inc. New Jersey.
Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti AM. 1996. Isolation and selection of biosurfactant-producing bacteria. World. J. Microbiol. Biotechnol. 12(1): 82-84. DOI: https://doi.org/10.1007/BF00327807
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P. 2014. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant. Microb. Interat. 27: 87–100. DOI: 10.1094/MPMI-09-13-0262-R
Chauhan S, Chauhan MS, Sharma P, Rana DS, Umar A. 2013. Physico-chemical studies of oppositely charged protein–surfactant system in aqueous solutions: sodium dodecyl sulphate (SDS)–lysozyme. Fluid Phase Equilibr. 337: 39–46. DOI: 10.1016/j.fluid.2012.09.003
Chaves MP, Guimaraes MV. 2018. Biosurfactant production from industrial wastes with potential remove of insoluble paint. International Biodeterioration and Biodegradation. 127: 10-16. DOI: https://doi.org/10.1016/j.ibiod.2017.11.005
Das P, Mukherjee S, Sen R. 2013. Genetic regulations of biosynthesis of microbial surfactants: an Overview. Biotechnol. Genet. Eng. Rev. 25: 165–186. DOI: 10.5661/bger-25-165.
De Almeida DG, Soares SRCF, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA. 2016. Biosurfactants: Promising molecules for petroleum biotechnology advances. Frontiers in Microbiology. 7: 1718. https://doi.org/10.3389/fmicb.2016.01718
Deleu M, Lorent J, Lins L, Brasseur R, Braun N, EI Kirat K, Nylander T, Dufre?ne YF, Mingeot-Leclercq MP. 2013. Efects of surfactin on membrane models displaying lipid phase separation. Biochem. Biophys. Acta. Biomembr. 1828: 801–815. DOI: 10.1016/j.bbamem.2012.11.007
Francy DS, Thomas JM, Raymond RI, Word CH. 1991. Emulsification of hydrocarbon by subsurface bacteria. J. Ind. Microbiol. 8: 237-246.
Gomaa EZ, El-Meihy RM. 2019. Bacterial biosurfactant from Citrobacter freundii MG812314.1 as a bioremoval tool of heavy metals from wastewater. Bull. Natl. Res. Cent. 43(69). https://doi.org/10.1186/s42269-019-0088-8
Henry G, Deleu M, Jourdan E, Thonart P, Ongena M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 13: 1824–1837. DOI: 10.1111/j.1462-5822.2011.01664.x
Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S. 2013. Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. International Biodeterioration & Biodegradation. 81: 28–34. DOI: 10.1016/j.ibiod.2012.11.012
Jacques P. 2011. Surfactin and other lipopeptides from Bacillus spp. In Biosurfactants: From Genes to Applications ed. Soberon-Chavez, G. pp. 57–93. Berlin Heidelberg: Springer, Microbiology Monographs vol. 20.
Jia K, Gao YH, Huang XQ, Guo RJ, Li SD. 2015. Rhizosphere inhibition of cucumber fusarium wilt by di erent surfactin excreting strains of Bacillus subtilis. Plant. Pathol. J. 31: 140–151. DOI: 10.5423/PPJ.OA.10.2014.0113
Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications. 10(1): 5029. DOI: 10.1038/s41467-019-13036-1
Kapadia SG, Yagnik BN, 2013, Current trend and potential of microbial biosurfactants. Asian. J. Exp. Biol. Sci. 4(1): 1-8.
Mongkolthanaruk W. 2012. Classification of Bacillus beneficial substances related to plants, humans and animals. J. Microbiol. Biotechnol. 22: 1597–1604. DOI: 10.4014/jmb.1204.04013
Moro GV, Almeida RTR, Napp AP, Porto C, Pilau EJ, Ludtke DS, Moro AV, Vainstein MH. 2018. Identification and ultra-high-performance-liquid chromatography coupled with high-resolution mass spectrometry characterization of biosurfactants including a new surfactin, isolated from oil-contaminated environments. Microb. Biotechnol. 11: 759-769. DOI: 10.1111/1751-7915.13276
Mulligan CN, Sharma SK, Mudhoo A. 2014. Biosurfactants. Research Trends and Applications. CRC Press Taylor & Francis Group. Boca Raton. London. New York. DOI: https://doi.org/10.1201/b16383
Ni’matuzahroh, Yuliawatin ET, Kumalasari DP, Trikurniadewi N, Pratiwi IA, Salamun, Fatimah, Sumarsih S, Yuliani H. 2017. Potency of oil sludge indigenous bacteria from Dumai-Riau in producing Bbosurfactant on variation of saccharide substrates; Proceeding of International Conference on Green Technology. 8: 339-340.
Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant bene cial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol. 29: 176–191. DOI: 10.1111/j.1574-6941.2011.01208.x
Nwaguma LV, Chikere CB, Okpokwasili GC. 2016. Isolation characterizatition, and application of biosurfactant by Klebsiella pneumonia strain ivn51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresour. Bioprocess. 3(40). DOI: https://doi.org/10.1186/s40643-016-0118-4
Ozdal M, Gurkok S, Ozdal OG. 2017. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech 7: 117. DOI: 10.1007/s13205-017-0774-x
Pacwa-P?ociniczak M, P?aza GA, Piotrowska-Seget Z, Cameotra SS. 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12: 633–654. DOI: 10.3390/ijms12010633
Pele MA, Ribeaux DR, Vieira ER, Souza AF, Luna MAC, Rodriguez DM, Andrade RFS, Alviano DS, Alviano CS, Barreto-Bergter E, Santiago ALCMA, Campos-Takaki GM. 2019. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron. J. Biotechnol. 38: 40-48. DOI: https://doi.org/10.1016/j.ejbt.2018.12.003
Plaza G. 2014. Biosurfactants: Green surfactants. Polish Academy of Science. Committee of Environmental Engineering, Monograph no 117 Warsaw.?
Pruthi V, Cameotra. 1997. Rapid identification of biosurfactant producing bacterial strain using cell surface hydrophobicity techniques. Biotechnol. Tech. 11: 671–674. DOI: https://doi.org/10.1023/A:1018411427192
Salamun, Ni’matuzahroh, Fatimah, Maswantari MIF, Rizka MU, Nurhariyati T, Supriyanto A. 2020. Diversity of Indigenous entomopathogenic bacilli from domestics breeding sites of dengue Hemorrhagic fever vector based on the toxicity against Aedes aegypti Larvae. Eco. Env. & Cons. 26. (April Suppl. Issue) : S21-S26.
Satpute SK, Bhuyan SS, Pardesi KR, Mujumdar SS, Dhakephalkar PK, Shete AM. 2010. Molecular genetics of biosurfactant synthesis in microorganisms. Adv. Exp. Med. Biol. 672: 14–41. DOI: 10.1007/978-1-4419-5979-9_2
Shahid I, Han J, Hanooq S, Malik KA, Borchers CH, Mehnaz S. 2021. Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Front. Sustain. Food Syst. 5:605195. DOI: https://doi.org/10.3389/fsufs.2021.605195
Shin J-H, Park B-S, Kim H-Y, Lee K-H, Kim KS. 2021. Antagonistic and plant growth-promoting effects of Bacillus velezensis BS1 isolated from rhizosphere soil in a pepper field. Plant Pathol. J. 37(3): 307-314. DOI: 10.5423/PPJ.NT.03.2021.0053
Silva RCFS, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA. 2014. Application of biosurfactants in the petroleum industry and the remediation of oil spills. International Journal of Molecular Science. 15: 12523-12542. DOI: 10.3390/ijms150712523
Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, Nadarajan R, Brodie EL, Lynch SV. 2015. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLOS ONE. 10(2): e0117617. DOI: 10.1371/journal.pone.0117617
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729. DOI: 10.1093/molbev/mst197
Willumsen PA, Karlson U. 1997. Screening of bacteria, isolated from PAH-contaminated soil, for production of biosurfactant and bioemulsifiers. biodegradation. 7: 415-423.?DOI: https://doi.org/10.1007/BF00056425
Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marques A, Manresa A, Ortiz A. 2010. Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence of colloid-osmotic mechanism. Langmuir. 26(11): 8567-8572. DOI: 10.1021/la904637k

Most read articles by the same author(s)

1 2 > >>