Utilization of sheep dung and rice straw with indigenous microbial agent to optimize vermicompost production and quality

##plugins.themes.bootstrap3.article.main##

YULI ASTUTI HIDAYATI
https://orcid.org/0000-0002-4712-994X
SITI NURACHMA
DEDEN ZAMZAM BADRUZZAMAN
EULIS TANTI MARLINA
ELLIN HARLIA

Abstract

Abstract. Hidayati YA, Nurachma S, Badruzzaman DZ, Marlina ET, Harlia E. 2021. Utilization of sheep dung and rice straw with indigenous microbial agent to optimize vermicompost production and quality. Biodiversitas 22: 5445-5451. Sheep dung is a useful by product that can be potentially processed into more useful products with minimal pollution. Vermicomposting is a waste processing method that produces Solid Organic Fertilizer and worm biomass as the raw materials for drugs and cosmetics. This research aimed to utilize the role of indigenous fungi and bacteria to determine the influence of C/N ratio from sheep dung and rice straw mixture on vermicompost quality (N, P, K, Ca, Mg). This experimental research was conducted in a Completely Randomized Design with three treatments (T1: C/N ratio of 25; T2: C/N ratio 30; T3: C/N ratio 35) and six replicates for each treatment. Data so obtained were analyzed with ANOVA and Duncan's Multiple Range Test. The results showed that C/N ratio had a noticeable influence on vermicompost quality. C/N ratio 30 produced the highest vermicompost quality (N: 1.11 ± 023381%; P: 0.56 ± 0.010328 %; K: 0.51 ± 0.021369 %; Ca: 0.33 ± 0.0248 %; Mg: 0.14 ± 0.0228%).

##plugins.themes.bootstrap3.article.details##

References
Abrams D, Metcalf D, Hojjatie M. 2014. Determination of Kjeldahl nitrogen in fertilizers by AOAC official methodSM 978.02: Effect of copper sulfate as a catalyst. J. AOAC Int., 97(3), 764–767. https://doi.org/10.5740/jaoacint.13-299
Abu-Bakar NA, Ibrahim N. 2013. Indigenous microorganisms production and the effect on composting process. AIP Conf. Proc., 1571(December 2013), 283–286. https://doi.org/10.1063/1.4858669
Aira M, Monroy F, Domínguez J. 2006. C to N ratio strongly affects population structure of Eisenia fetida in vermicomposting systems. Eur. J. Soil Biol., 42(SUPPL. 1), 127–131. https://doi.org/10.1016/j.ejsobi.2006.07.039
Arslan Topal EI, Ünlü A, Topal M. 2016. Effect of aeration rate on elimination of coliforms during composting of vegetable–fruit wastes. Int. J. Recycl. Org. Waste Agric., 5(3), 243–249. https://doi.org/10.1007/s40093-016-0134-6
Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O. 2020. Waste management through composting: Challenges and potentials. Sustain., 12(11), 1–23. https://doi.org/10.3390/su12114456
Azim K, Ouyahia K, Amellouk A, Perissol C, Thami-Alami I, Soudi, B. 2014. Dynamic composting optimization through C/N ratio variation as a startup parameter. 4th ISOFAR Sci. Conf. ‘Building Org. Bridg. Org. World Congr., 3, 787–790. http://orgprints.org/23554/
Azim K, Soudi B, Boukhari S, Perissol C, Roussos S, Thami Alami, I. 2018. Composting parameters and compost quality: a literature review. Org. Agric., 8(2), 141–158. https://doi.org/10.1007/s13165-017-0180-z
Bhat SA, Singh J, Vig AP. 2017. Instrumental characterization of organic wastes for evaluation of vermicompost maturity. J. Anal. Sci. Technol., 8(1). https://doi.org/10.1186/s40543-017-0112-2
Dadi D, Daba G, Beyene A, Luis P, Van der Bruggen B. 2019. Composting and co-composting of coffee husk and pulp with source-separated municipal solid waste: a breakthrough in valorization of coffee waste. Int. J. Recycl. Org. Waste Agric., 8(3), 263–277. https://doi.org/10.1007/s40093-019-0256-8
Ditjen PKH. 2020. Livestock and Health Statistics 2020. https://ditjenpkh.pertanian.go.id
Domínguez J, Gómez-Brandón M. 2012. Vermicomposting: Composting with Earthworms to Recycle Organic Wastes. Manag. Org. Waste. https://doi.org/10.5772/33874
Farag AA, Ahmed M, Salman, Hashem FA, Abdrabbo MAA. 2015. Utilization of Rice Straw and Vermicompost in Vegetable. Glob. J. Adv. Res., 2(5), 800–813.
Galitskaya P, Biktasheva L, Saveliev A, Grigoryeva T, Boulygina E, Selivanovskaya S. 2017. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing. PLoS One, 12(10), 1–20. https://doi.org/10.1371/journal.pone.0186051
Garczy?ska M, Kostecka J, Paczka G, Hajduk E, Mazur-Paczka A, Butt KR. 2020. Properties of vermicomposts derived from cameroon sheep dung. Appl. Sci., 10(15), 1–14. https://doi.org/10.3390/app10155048
Gelman F, Binstock R, Halicz L. 2012. Application of the Walkley-Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel, 96, 608–610. https://doi.org/10.1016/j.fuel.2011.12.053
Goswami L, Patel AK, Uma, Dutta G, Bhattacharyya P, Gogoi N, Satya SB. 2013. Hazard remediation and recycling of tea industry and paper mill bottom ash through vermiconversion. Chemosphere, 92(6), 708–713. https://doi.org/10.1016/j.chemosphere.2013.04.066
Guo T, Zhang Q, Ai C, Liang G, He P, Zhou W. 2018. Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system. Sci. Rep., 8(1), 1–12. https://doi.org/10.1038/s41598-018-20293-5
Gurtler, JB, Doyle MP, Erickson MC, Jiang X, Millner P, Sharma M. 2018. Composting to inactivate foodborne pathogens for crop soil application: A review. J. Food Prot., 81(11), 1821–1837. https://doi.org/10.4315/0362-028X.JFP-18-217
Jin Z, Shah T, Zhang L, Liu H, Peng S, Nie L. 2020. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur., 9(2), 1–13. https://doi.org/10.1002/fes3.200
Kaplan DL, Hartenstein R, Neuhauser EF, Malecki MR. 1980. Physicochemical requirements in the environment of the earthworm Eisenia foetida. Soil Biol. Biochem., 12(4), 347–352. https://doi.org/10.1016/0038-0717(80)90008-5
Kaushik P, Garg VK. 2003. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Bioresour. Technol., 90(3), 311–316. https://doi.org/10.1016/S0960-8524(03)00146-9
Medina-Sauza R, Álvarez-Jiménez M, Delhal A, Reverchon F, Blouin M, Guerrero-Analco JA, Cerdán CR, Guevara R, Villain L, Barois I. 2019. Earthworms building up soil microbiota, a review. Front. Environ. Sci., 7(JUN), 1–20. https://doi.org/10.3389/fenvs.2019.00081
Mironov V, Vanteeva A, Merkel, A. 2021. Microbiological Activity during Co-Composting of Food and Agricultural Waste for Soil Amendment. Agronomy, 11(5), 928. https://doi.org/10.3390/agronomy11050928
Mistry J, Mukhopadhyay AP, Baur, GN. 2015. Status of N P K in Vermicompost Prepared from Two Common Weed and Two Medicinal Plants. Int. J. Appl. Sci. Biotechnol., 3(2), 193–196. https://doi.org/10.3126/ijasbt.v3i2.12533
Mohammed-Nour A, Al-Sewailem M, El-Naggar AH. 2019. The influence of alkalization and temperature on Ammonia recovery from cow manure and the chemical properties of the effluents. Sustain., 11(8). https://doi.org/10.3390/su11082441
Moldes A, Cendón Y, Barral MT. 2007. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresour. Technol., 98(16), 3069–3075. https://doi.org/10.1016/j.biortech.2006.10.021
Nayak AK, Varma VS, Kalamdh A. 2013. Effects of Various C/N Ratios During Vermicomposting of Sewage Sludge Using Eisenia fetida. J. Environ. Sci. Technol., 6(2), 63–78. https://doi.org/10.3923/jest.2013.63.78
Nunes RR, Bontempi RM, Mendonça G, Galetti G, Rezende MOO. 2016. Vermicomposting as an advanced biological treatment for industrial waste from the leather industry. J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, 51(5), 271–277. https://doi.org/10.1080/03601234.2015.1128737
Pathma J, Sakthivel N. 2012. Microbial diversity of vermPathma, J., & Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1(1), 26. http://doi.org/10.1186/2193-1801-1-26icompost bacte. Springerplus, 1(1), 26. http://www.springerplus.com/content/1/1/26
Pattnaik S, Reddy, M. V. 2010. Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species— Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus . Appl. Environ. Soil Sci., 2010, 1–13. https://doi.org/10.1155/2010/967526
Penakalapati G, Swarthout J, Delahoy MJ, McAliley L, Wodnik B, Levy K, Freeman MC. 2017. Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities. Environ. Sci. Technol., 51(20), 11537–11552. https://doi.org/10.1021/acs.est.7b02811
Ponnamperuma FN. 1984. Straw as a source of nutrients for wetland rice (B. Stephen (ed.)). International Rice Research Institute, Los Banos Laguna.
Pourzamani H, Ghavi M. 2016. Effect of rice bran on the quality of vermicompost produced from food waste. Int. J. Environ. Health Eng., 5(1), 13. https://doi.org/10.4103/2277-9183.190639
Ramnarain YI, Ansari AA, Ori L. 2019. Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int. J. Recycl. Org. Waste Agric., 8(1), 23–36. https://doi.org/10.1007/s40093-018-0225-7
Roca-Pérez L, Martínez C, Marcilla P, Boluda R. 2009. Composting rice straw with sewage sludge and compost effects on the soil-plant system. Chemosphere, 75(6), 781–787. https://doi.org/10.1016/j.chemosphere.2008.12.058
Shirani Bidabadi S. 2018. Waste management using vermicompost derived liquids in sustainable horticulture. Trends Hortic., 1(3). https://doi.org/10.24294/th.v1i3.175
Singh D, Bhadauria S. 2012. Quantitative and qualitative distribution of bacteria in vermicompost produced by different organic wastes. Nat. Environ. Pollut. Technol., 11(2), 331–334.
Suthar S. 2009. Bioremediation of agricultural wastes through vermicomposting. Bioremediat. J., 13(1), 21–28. https://doi.org/10.1080/10889860802690513
Tamizhazhagan V. Pugazhendy K. Sakthidasan V, Revathi K, Baranitharan M. 2016. Investigation of Microbial Count in the Soil and Earthworm Gut ? Eudrilus Eugeniae ?. 4(3), 15–17.
Vasanthi Joseph, P. 2019. Efficacy of Different Substrates on Vermicompost Production: A Biochemical Analysis. Org. Fertil. - Hist. Prod. Appl., 1–9. https://doi.org/10.5772/intechopen.86187
Wu X, Ren L, Luo L, Zhang J, Zhang L, Huang H. 2020. Bacterial and fungal community dynamics and shaping factors during agriculturalwaste composting with zeolite and biochar addition. Sustain., 12(17). https://doi.org/10.3390/su12177082
Yan YW, Azwady AAN, Shamsuddin ZH, Muskhazli M, Suraiini AA, Teng SK. 2013. Comparison of plant nutrient contents in vermicompost from selected plant residues. African J. Biotechnol., 12(17), 2207–2214. https://doi.org/10.5897/AJB11.3164
Yang X, Zhao J, Liang J, Zhu J. 2020. Efficient and selective catalytic conversion of hemicellulose in rice straw by metal catalyst under mild conditions. Sustain., 12(24), 1–14. https://doi.org/10.3390/su122410601
Zainuddin N, Maarif MS, Rianic E, Noord, S. M. 2019. Water pollution from the activity of large-ruminant Animal Quarantine Installation (AQI) in its receiving water body. Trop. Anim. Sci. J., 42(1), 68–75. https://doi.org/10.5398/tasj.2019.42.1.68