Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods

##plugins.themes.bootstrap3.article.main##

MUHAMMAD FAKHRI
ENDAR RIYANI
ARNING WILUJENG EKAWATI
NASRULLAH BAI ARIFIN
ATING YUNIARTI
YUNI WIDYAWATI
INDRA KURNIAWAN SAPUTRA
PRATAMA DIFFI SAMUEL
MUHLIS ZAINUDIN ARIF
ANIK MARTINAH HARIATI

Abstract

Abstract. Fakhri M, Riyani E, Ekawati AW, Arifin NB, Yuniarti A, Widyawati Y, Saputra IK, Samuel PD, Arif MZ, Hariati AM. 2021. Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods. Biodiversitas 22: 5344-5349. Chlorella sp. is well-known as a functional feed in fish culture and has been utilized in the food industry. In phototrophic cultivation, photoperiod plays a fundamental part in the growth and pigment content of microalgae. This work was purposed to evaluate the effect of light:dark cycle on the growth rate, production of biomass and pigment and nutrient utilization of Chlorella sp. Four photoperiods (8:16, 12:12, 18:6, and 24:0 h light:dark regimes) under a constant light intensity of 4500 lux were applied in this study. The results demonstrated that increasing light duration led to increased cell growth, biomass, and pigment production of Chlorella sp. The best cell concentration, specific growth rate, and biomass production were 28.5 x 106 cells mL-1, 1.47 day-1, and 0.815 g L-1 dry weight, respectively, under continuous illumination. The maximum chlorophyll a of 19.205 mg L-1 and carotenoid of 4.656 mg L-1 were obtained at 24:0 h photoperiod. The highest uptake of nitrate (66.331%) and phosphate (76.191%) by Chlorella sp. were achieved under 24 h light regime. Improving the uptake of nutrients resulted in enhanced growth and pigment content of Chlorella sp. We conclude that continuous illumination is the best photoperiod to produce biomass and pigment and improve the nutrient removal of Chlorella sp.

##plugins.themes.bootstrap3.article.details##

References
Acevedo S, Pino NJ, Peñuela GA. 2017. Biomass production of Scenedesmus sp. and removal of nitrogen and phosphorus in domestic wastewater. Ingeniería y Competitividad 19: 185 – 193.
Ahmad MT, Shariff M, Yusoff FMd., Goh YM, Banerjee S. 2018. Applications of microalga Chlorella vulgaris in aquaculture. Rev Aquac 12(1): 328-346. DOI: 10.1111/raq.12320.
Banerjee S, Hew WE, Khatoon H, Shariff M, FMd. Yusoff. 2011. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. Afr J Biotechnol 10(8): 1375-1383. DOI: 10.5897/AJB10.1748.
Benemann J. 2013. Microalgae for biofuels and animal feeds. Energies 6(11): 5869-5886. DOI: 10.3390/en6115869.
Bohutskyi P, Bouwer E. 2013. Biogas production from algae and cyanobacteria through anaerobic digestion: A review, analysis, and research needs. In: Lee JW (eds) Advanced Biofuels and Bioproducts. Springer, New York.
Bouterfas R, Belkoura M, Dauta A. 2006. The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake. Limnetica 25: 647-656.
Boyd CE. 1979. Water Quality in Warmwater Fish Pond, Agricultural Experiment Station, Auburn University, USA.
Chauton MS, Winge P, Brembu T, Vadstein O, Bone AM. 2013 Gene regulation of carbon ?xation, storage, and utilization in the Diatom Phaeodactylum tricornutum acclimated to light/dark cycles. Plant Physiol 161(2): 1034–1048. DOI:org/10.1104/pp.112.206177.
Fakhri M, Arifin NB, Budianto B, Yuniarti A, Hariati AM. 2015. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nat Environ Pollut Technol 14: 563-566.
Fakhri M, Arifin NB, Yuniarti A, Hariati AM. 2017. The influence of salinity on the growth and chlorophyll content of Nannochloropsis sp. BJ17. Nat Environ Pollut Technol 16: 209-212.
Fakhri M, Sanudi, Arifin NB, Ekawati AW, Yuniarti A, Hariati AM. 2017. Effect of photoperiod regimes on growth, biomass and pigment content of Nannochloropsis sp. BJ17. Asian Jr of Microbiol Biotech Env Sc 19: 263-267.
Fakhri M, Antika PW, Ekawati AW, Arifin NB, Yuniarti A, Hariati AM. 2021. Effect of glucose administration on biomass, ?-carotene and protein content of Dunaliella sp. under mixotrophic cultivation. Intl J Agric Biol 25: 404?408. DOI: 10.17957/IJAB/15.1681.
Fathi M, Meshkini S, Nadiri R. 2013. The effect of extracted salt from Urmia Lake on the growth, ?eta-carotene and chlorophyll a content of halophilic alga Chlorella sp. Turkish J Fish Aquat Sci 13: 233-240. DOI: 10.4194/1303-2712-v13_2_05.
Fábregas J, Maseda A, Domínguez A, Ferreira M, Otero A. 2002. Changes in the cell composition of the marine microalga, Nannochloropsis gaditana, during a light:dark cycle. Biotechnol Lett 24: 1699–1703. DOI: 10.1023/A:1020661719272.
Griffiths MJ, van Hille RP, Harrison ST. 2014. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl Microbiol Biotechnol 98(5): 2345-2356. DOI: 10.1007/s00253-013-5442-4.
Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT. 2009. Effect of light cycles (night/day) on CO2 ?xation and biomass production by microalgae in photobioreactors. Chem Eng Process 48(1): 306-310. DOI: 10.1016/j.cep.2008.04.007.
Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH. 1999. Specific growth rates of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13-87s. J Biotechnol 70(1–3): 323-333. DOI: 10.1016/S0079-6352(99)80124-6.
Kendirlioglu G, Agirman N, Cetin AK. 2015. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris. Turk J Sci Technol 10(2): 7-10.
Khan M, Yoshida N. 2008. Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Bioresour Technol 99(3): 575-82. DOI: 10.1016/j.biortech.2006.12.031.
Khanra S, Mondal M, Halderl G, Tiwari ON, Gayen K, Bhowmick TK. 2018. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food Bioprod Process. DOI: 10.1016/j.fbp.2018.02.002.
Khoeyi ZA, Seyfabadi J, Ramezanpour Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20(1): 41–49. DOI:org/10.1007/s10499-011-9440-1.
Kim CW, Sung MG, Nam K, Moon M, Kwon JH, Yang JW. 2014. Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour Technol 159: 30-35. DOI: 10.1016/j.biortech.2014.02.024.
Krzeminska I, Pawlik-Skowronska B, Trzcinska M, Tys J. 2014. In?uence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37(4): 735-41. DOI: 10.1007/s00449-013-1044-x.
Levasseur W, Taidi B, Lacombe R, Perré P, Pozzobon V. 2018. Impact of seconds to minutes photoperiods on Chlorella vulgaris growth rate and chlorophyll a and b content. Algal Res 36: 10-16. DOI:org/10.1016/j.algal.2018.10.007.
Liu S, Daiggerd GT, Kang J, Zhang G. 2019. Effects of light intensity and photoperiod on pigments production and corresponding key gene expression of Rhodopseudomonas palustris in a photobioreactor system. Bioresour Technol 294: 1-8. DOI: 10.1016/j.biortech.2019.122172.
Meseck SL, Alix JH, Wikfors GH. 2005. Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture 246(1-4): 393-404. DOI: 10.1016/j.aquaculture.2005.02.034.
Moheimani N, Borowitzka M, Isdepsky A, Sing SF. 2013. Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Netherlands.
Niangoran NUF, Buso D, Zissis G, Prudhomme T. 2021. Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis). OCL 28: 1-8. DOI: 10.1051/ocl/2021025.
Osorio JHM, Del Mondo A, Pinto G, Pollio A, Frunzo L, Lens PNL, Esposito G. 2020. Nutrient removal efficiency of green algal strains at high phosphate concentrations. Water Sci Technol 80(10): 1832-1843. DOI: 10.2166/wst.2019.431.
Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P. 2013. Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 40: 781–796. DOI: 10.1007/s10295-013-1281-7.
Ritchie RJ. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89: 27–41. DOI: 10.1007/s11120-006-9065-9.
Safafar H, Nørregaard PU, Ljubic A, Møller P, Holdt SL, Jacobsen C. 2016. Enhancement of protein and pigment content in two Chlorella species cultivated on industrial process water. 4(4): 1-15. J Mar Sci Eng DOI:10.3390/jmse4040084.
Sakamoto K, Baba M, Suzuki I, Watanabe MM, Shiraiwa Y. 2012. Optimization of light for growth, photosynthesis, and hydrocarbon production by the colonial microalga Botryococcus braunii BOT-22. Bioresour Technol 110:474-479. DOI: 10.1016/j.biortech.2012.01.091.
Seyfabadi J, Ramezanpour Z, Khoeyi ZA. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726. DOI: 10.1007/s10811-010-9569-8.
Sharma R, Singh GP, Sharma VK. 2012. Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. J Plant Pathol Microb 3(5): 1-6. DOI: 10.4172/2157-7471.1000131.
Xu K, Zou X, Wen H, Xue Y, Qu Y, Li Y. 2019. Effects of multi-temperature regimes on cultivation of microalgae in municipal wastewater to simultaneously remove nutrients and produce biomass. Appl Microbiol Biotechnol 103(19): 8255-8265. DOI: 10.1007/s00253-019-10051-6.
Xu Y, Ibrahim IM, Harvey PJ. 2016. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (Chlorophyta) CCAP 19/30. Plant Physiol Biochem 106: 305-315. DOI:org/10.1016/j. plaphy.2016.05.021.
Xue C, Goh QY, Tan W, Hossain I, Chen WN, Lau R. 2011. Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour. Technol, 6005–6012. DOI: 10.1016/j.biortech.2011.02.061. Volume 102, Issue 10, May 2011, Pages 6005-6012
Yaakob MA, Mohamed RMSR, Al-Gheethi A, Gokare RA, Ambati RR. 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview 10(2): 1-19. Cells DOI: 10.3390/cells10020393.
Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (Thessalon) 21: 1-10. DOI:10.1186/2241-5793-21-6.
Zhi R, Yang A, Zhang G, Zhu Y, Meng F, Li X. 2019. Effects of light-dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production. Bioresour Technol 274: 496-501 DOI: 10.1016/j.biortech.2018.12.021.

Most read articles by the same author(s)