Screening of soil fungi as bioremediation fungicide and its effect on growth of potato plants

##plugins.themes.bootstrap3.article.main##

ABDUL LATIEF ABADI
FERY ABDUL CHOLIQ
MUTHIA OKTAVIANITA
NOVIA ARINATA
MOCHAMMAD SYAMSUL HADI
YOGO SETIAWAN

Abstract

Abstract. Abadi AL, Choliq FA, Oktavianita M, Arinata N, Hadi MS, Setiawan Y. 2022. Screening of soil fungi as bioremediation fungicide and its effect on growth of potato plants. Biodiversitas 23: 1605-1610. The negative impact of using fungicides on the environment can lead to chemical residues in the soil. The chemical degradation process can be carried out in several ways, one of which is by biological means by using microbes such as soil fungi. This study aimed to evaluate soil fungi isolated from natural forests for bioremediation of Mancozeb fungicide commonly used in potato fields in Indonesia. Isolated soil fungi were identified based on morphological and molecular level (PCR). The inhibition assay was carried out by growing fungal isolates on PDA media containing a fungicide with an active ingredient of 80% Mancozeb. Trichoderma harzianum isolated as a soil fungus from natural forest could grow in the fungicide Mancozeb medium. The biodegradation assay showed that treatment of Trichoderma harzianum and Mancozeb fungicide did not inhibit the growth of potato plants (plant height, number of leaves, and root length) as compared to the control. Based on the results of degradation test using HPLC method, T. harzianum both isolates can reduce the residue of fungicide Mancozeb in soil during the vegetative growth period of potato plants.

##plugins.themes.bootstrap3.article.details##

References
Adetutu EM, Ball AS, Osborn AM. 2008. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities. J. Appl. Microbiol. 105(6): 1777–1790. DOI: https://doi.org/10.1111/j.1365-2672.2008.03948.x.
Ahlawat OP, Gupta P, Kumar A, Sharma DK, Ahlawat K. 2010. Bioremediation of Fungicides by Spent Mushroom Substrate and Its Associated Microflora. Indian J. Microbiol. 50(4): 390–395. DOI: 10.1007/s12088-011-0067-8.
Alori ET, Babalola OO. 2018. Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front. Microbiol. DOI: 10.3389/fmicb.2018.02213
Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32(11): 180. DOI: 10.1007/s11274-016-2137-x.
B?aszczyk L, Siwulski M, Sobieralski K. 2014. Trichoderma spp . – application and prospects for use in organic farming and industry. (January). DOI: 10.2478/jppr-2014-0047.
Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9): e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691.
Cai F, Chen W, Wei Z, Pang G, Li R. 2015. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 388. DOI: 10.1007/s11104-014-2326-z.
Chakraborty B, Chakraborty U, Dey P, Sunar K. 2010. Phylogenetic Relationships of Trichoderma isolates of North Bengal Based on Sequence Analysis of ITS Region of rDNA. J. Appl. Sci. Res. 6(10): 1477-1482.
Das N, Chandran P. 2011. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. 2011: 1–13. DOI: 10.4061/2011/941810.
Deshmukh R, Khardenavis AA, Purohit HJ. 2016. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J. Microbiol. 56(3): 247–264. DOI: 10.1007/s12088-016-0584-6.
Filizola PRB, Luna MAC, de Souza AF, Coelho IL, Laranjeira D. 2019. Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microb. Cell Fact. 18(1): 89. DOI: 10.1186/s12934-019-1108-y.
Gougoulias C, Clark JM, Shaw LJ. 2014. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 94(12): 2362–2371. DOI: 10.1002/jsfa.6577.
Gupta A, Gupta R, Singh RL. 2016. Microbes and Environment (R.L. Singh, editor). Princ. Appl. Environ. Biotechnol. a Sustain. Futur.: 43–84. DOI: 10.1007/978-981-10-1866-4_3.
Hj Yakop F, Taha H, Shivanand P. 2019. Isolation of fungi from various habitats and their possible bioremediation. Curr. Sci. 116: 733–740.
Igiri, B.E., S.I.R. Okoduwa, G.O. Idoko, E.P. Akabuogu, A.O. Adeyi, et al. 2018. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review (V. Matozzo, editor). J. Toxicol. 2018: 2568038. doi: 10.1155/2018/2568038.
Joseph MRP, Al-Hakami AM, Assiry MM, Jamil AS, Assiry AM. 2015. In vitro anti-yeast activity of chloramphenicol: A preliminary report. J. Mycol. Med. 25(1): 17–22. DOI: https://doi.org/10.1016/j.mycmed.2014.10.019.
Joutey NT. 2013. Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. In: Bahafid, W., editor, Biodegradation. IntechOpen, Rijeka. p. Ch. 11
Li P, Zhu J, Kong Q, Jiang B, Wan X. 2013. The ethylene bis-dithiocarbamate fungicide Mancozeb activates voltage-gated KCNQ2 potassium channel. Toxicol. Lett. 219. DOI: 10.1016/j.toxlet.2013.03.020.
Naher L, Syawani N, Amieza N, Kamarudin AB, Karim SMR. 2019. Trichoderma species diversity in rhizosphere soils and potential antagonism with fusarium oxysporum. Biosci. J. 35(1): 13–26. DOI: 10.14393/BJ-V35N1A2019-41605.
Nurbailis AD, Rahma H, Liswarni Y. 2019. Potential of culture filtrate from trichoderma spp. As biofungicide to colletotrichum gloeosporioides causing anthracnose disease in chili. Biodiversitas 20(10): 2915–2920. DOI: 10.13057/biodiv/d201020.
Ojuederie OB, and Babalola OO. 2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A Review. Int. J. Environ. Res. Public Health 14(12): 1504. DOI: 10.3390/ijerph14121504.
Roman DL, Voiculescu DI, Filip M, Ostafe V, Isvoran A. 2021. Effects of triazole fungicides on soil microbiota and on the activities of enzymes found in soil: A review. Agric. 11(9): 1–18. DOI: 10.3390/agriculture11090893.
Sharma I. 2021. Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects. Trace Metals in the Environment. IntechOpen, Rijeka. p. Ch. 12
Sari AL, Hasanuddin, Lubis L. 2021. The effectiveness of contact fungicides mancozeb in controlling potato leaf blight disease (Phytophthora infestans (Mont) de Barry) in Karo District in the wet month and in the laboratory. IOP Conf. Ser. Earth Environ. Sci. 782(4). DOI: 10.1088/1755-1315/782/4/042022.
Suada IK. 2017. Short communication: The potential of various indigenous Trichoderma spp. to suppress Plasmodiophora brassicae the pathogen of clubroot disease on cabbage. Biodiversitas 18(4): 1424–1429. DOI: 10.13057/biodiv/d180418.
Szpyrka E, Podbielska M, Zwolak A, Piechowicz B, Siebielec G. 2020. Influence of a commercial biological fungicide containing trichoderma harzianum rifai t-22 on dissipation kinetics and degradation of five herbicides in two types of soil. Molecules 25(6): 1391. DOI: 10.3390/molecules25061391.
Tomer A, Sigh R, Prasad D. 2018. Compatibility Trichoderma harzianum with Systemic and Two non Systemic Fungicides of in vitro. Asian J. Crop Sci. 10: 174–179. DOI: 10.3923/ajcs.2018.174.179.
Tripathi P, Singh P, Mishra A, Chauhan P, Dwivedi S. 2013. Trichoderma: A potential bioremediator for environmental clean up. Clean Technol. Environ. Policy 15. DOI: 10.1007/s10098-012-0553-7.
Verasoundarapandian G, Lim ZS, Radziff SBM, Taufik SH, Puasa NA. 2022. Remediation of Pesticides by Microalgae as Feasible Approach in Agriculture: Bibliometric Strategies. Agronomy 12(1). DOI: 10.3390/agronomy12010117.
Wightwick A, Reichman SM, Menzies NW, Allinson G (2013). Industry wide risk assessment: case study of Cu in vineyard soils. Water Air Soil Pollution 224(12): 1702. DOI: 10.1007/s11270-013-1702-2
Wurzburger N, Clemmensen KE. 2018. From mycorrhizal fungal traits to ecosystem properties – and back again. J. Ecol. 106(2): 463–467. DOI: https://doi.org/10.1111/1365-2745.12922.
Zin NA, Badaluddin NA. 2020. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 65(2): 168–178. DOI: https://doi.org/10.1016/j.aoas.2020.09.003.
Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G. 2019. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 53(7): 3347–3365. DOI: 10.1021/acs.est.8b04392.

Most read articles by the same author(s)