Short Communication: Biological control agent for Spodoptera litura on vegetable plants




Abstract. Damiri N, Pujiastuti Y, Mulawarman, Astuti DT, Afriani SR, Rahim SE. 2022. Short Communication: Biological control agent for Spodoptera litura on vegetable plants. Biodiversitas 23: 2609-2613. This study aimed to assess the population dynamics of Bacillus thuringiensis and its potency as a bio-agent against Spodoptera litura. The field study was conducted in Musi Banyuasin District, South Sumatra, Indonesia. Isolation and exploration of B. thuringiensis were carried out by taking the soil around the roots or rhizosphere of the fruit plants. The results showed that 13 isolates of B. thuringiensis, i.e., 1 isolate from Lansium domesticum (D1), 3 isolates from Artocarpus heterophyllus (N1,2,3), 1 isolate from Averrhoa carambola (B1), 4 isolates from Nephelium lappaceum (R1,2,3,4), 1 isolate from Musa paradisiaca (P1), 1 isolate from Mangifera indica (M1), 1 isolate from Garcinia mangostana (M2) and 1 isolate from Psidium guajava (JB1) were isolated from the rhizosphere of various fruit tree. The screening test results showed that isolates R2 and R3 had the highest toxicity, i.e., 51.14 and 50.77%, respectively, in controlling S. litura on vegetable plants.


Adie MM, Krisnawati A, Mufidah Z.A. 2012. The degree of resistance of soybean genotypes to S. litura caterpillar. National Seminar Results of research on various crops and tubers. Increased competitiveness and implementation of peanut and bulb commodities development supports the achievement of 4 agricultural developments. Puslitbangtan. Agricultural Research Agency: 29-36.
Afriani SR, Pujiastuti Y, Irsan C, Damiri N, Nugraha S, Sembiring ER. 2017. Isolation and toxicity test Bacillus thuringiensis from Sekayu region soil, South Sumatera on Spodoptera litura. IOP Conf. Series: Earth and Environmental Science 102(2017)012066. Doi:10.1088/1755-1315/102/1/012066.
Astuti DR, Pujiastuti Y, Suparman SHK, Damiri N, Nugraha S, Sembiring ER, Mulawarman. 2017. Exploration of Bacillus thuringiensis Berl. From soil and screening test its toxicity on insects of lepidoptera order. IOP Conf. Series: Earth and Environmental Science 102(2017)012063. Doi:10.1088/1755-1315/102/1/012063.
Asmaliyah E, Wati H, Utami S, Mulyadi K, Yudhistiran, Sari FW. 2010. Introduction of vegetable pesticide-producing plants and their traditional use. Ministry of Forestry. Agency for Forestry Research and Development. Center for Research and Development of Forest Productivity. 62 p.
Bravo A, Likitvivatanavong S, Gill S, Soberon M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemestry and Molecular Biology, 41:423-431.
Center for food crops research and development., 2015. The threat of caterpillar attacks Spodoptera litura Fabricius against soybean productivity. Agency for Agricultural Research and Development.
Chakroun M, Banyuls N, Bel Y, Escriche B, Ferre J. 2016. Bacterial vegetative insecticidal protein (Vip) from entomopathogenic bacteria. Microbiol. Mol. Biol. Rev (80):329-350.
Georgia S, Ravijay B, Richard MT, Teresa C, Paul C. 2011. Bacillus thuringiensis: a century of research, development and commercial applications.
Ghazwan, A, Ashouri A, Talaei-Hassanloui R. 2017. Evaluation of Bacillus thuringiensis to control Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory condition. Agricultural Sciences (8):591-599.
He RI, Wang GP, Liu XH, Zhang CL, Lin FC. 2009. Antagonistic bioactivity of an endophytic bacteriaum isolated from Epimidium brevicornu Maxim. Afr. J. Biotechnol. 8(2): 191-195.
Hermanto SE. Jusuf, Hero MS. 2013. Exploration of Toxin Protein Bacillus thuringiensis from Land in Tangerang Regency. Valence. 3 (1). Page 58-56.
Infante I, Morel MA, Ubalde MC, Martinez-Rosales C, Belvisi S, Castro-Sowinski S. 2010. Wool-degrading Bacillus isolates: extracellular protease production for microbial processing of fabrics. World J. Microbial Biotechnol 26(6):1047-1052.
Martin PAW,Gundersen-Rindal RE, Blackburn MB. 2011. Distribution of phenotypes among Bacillus thuringiensis strains. Syst Appl Microbiol 33(4):201-208.
Nawrot-Esposito, MP, Babin A, Pasco M, Poirie M, Gatti JL, Gallet A. 2020. Bacillus thuringiensis bioinsecticides induce developmental defects in n0n-target Drosophila melanogaster larvae. Insect, 11,697.
Nisnevitch M, Sigawi S, Cahan R, Nitzan Y. 2010. Isolation, characterization and biological role of camelysin from Bacillus thuringiensis subsp. Israelensis. Curr Microbiol 61(3):176-183.
Omotayo OP and Babalola OO 2020. Resident rhizosphere microbiome’s ecological dynamic and conservation: towards achieving the envisioned sustainable development goal, a review. International Soil and Water Conservation Research 9(1):127-142.
Palma L, Munoz D, Berry C, Murillo J, Caballero P. 2014. Bacillus thuringiensis toxins: An overview of the biocidal activity. Toxins (6):3296-3325.
Peralta, C. and Palma L., 2017. Is the insect world overcoming the efficacy of Bacillus thuringiensis? Toxin 9(39):3390-3395.
Pujiastuti Y, Astuti, DT., Afriyani SR., Suparman S., Sembirig ER., Nugraha S., and Damiri D. 2018. Characterization of Bacillus tfuringiensis Berl, indigenous from soil and its potency as biological agents of Spodoptera litura (Lepidoptera:Noctuidea). IOP Conf. Series: Earth and Environmental Science 102(2018)012064:1-8.
Ramzan M., Murtaza G., Javaid M., Iqbal N., Raza T., Arshad A., Awais M. 2019. Comparative efficacy of newer insecticides again Plutella xylostella and Spodoptera litura on Cauliflower under laboratory condition. Ind. J. Pure App. Biosci 7(5):1-7.
Rusmana I and Hadioetomo RS. 1994. Isolation of Bacillus thuringiensis Berl. from silkworm farms and their toxicity to the larvae of Crocodolomia binotalis Zell and Spodoptera litura F. Hayati 1 (1): 22-23.
Sayid Z, Ali A, Usman M, Mujahid A, Jafar B, Kashif A, Bashir HS, Abbas Q, Tariq MU, Shakeel MD, Sultan Y, Qureshi MH and Akhtar N. 2020. Toxicity of Bacillus thuringiensis againts second instar larvae of Spodoptera litura on different host plants. Journal of Scientific Agriculture 4:93-95.
Sarr PS. Yamakawa T, Asatsuma S, Fujimoto S,Sakai M. 2010. Investigation of endophytic and symbiotic features of Rasltonia sp. TSCI isolated from cowpea nodules. Afr J Microbiol Res. 4(19): 1959-1963.
Schunemann R, Knaak N, Fiuza LM. 2014. Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillar and stink bugs soybean culture. International Scholarly Research Notices, Microbiology 2014:22pp.
Sessitch A, Reiter B, Berg G. 2004. Endophytic bacteria communities of field grown potato plants and their plant growth – promoting abilities. Can J Microbiol. 50(4):239-249.
Supartha NPEY, Susila IW, Yuladhi KA. 2014. Diversity and density of parasitoids associated with Plutella xylostella L. (Lepidoptera: Plutella lidae) in cabbage plants without application and application of insecticides. E-journal Tropical Agrotechnology vol. 3 (1): 13-21.
Tampubolon DY, Pangestiningsih Y, Zahara F, Manik F. 2013. Bacillus thuringiensis and Metharhizium anisoplie pathogens test against the mortality of Spodoptera litura Fabr (Lepidoptera: Noctuidae) in the laboratory. Online Journal of Agroecotechnology Vol 1 (3).
Thomson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula SE, Buee M, Mougel C, Ranjard L,Van Veen JA, Martin F, Bailey MJ, Lemanceu P. 2015. Soil condition and land use intensification on effects on soil microbial communities across a range European field site. Soil. Biol. Biochem (88):403-413.
Widyati E. 2013. Rhizosphere microbes community dinamic and it contribution on plants growth. Tekno. Hutan Tanaman 6(2): 55-64.
Van Frankenhuyzen K. 2009. Insecticidal activity of Bacillus thuringiensis crystal protein. J. Invertebr Pathol (101):1-6.

Most read articles by the same author(s)