Environmental risk assessment of Pb, Cu, Zn, and Cd concentrations accumulated in selected mangrove roots and surrounding their sediment

##plugins.themes.bootstrap3.article.main##

ROZIRWAN
https://orcid.org/0000-0001-8415-3343
NADILA NUR KHOTIMAH
https://orcid.org/0009-0002-4048-0822
WIKE AYU EKA PUTRI
https://orcid.org/0000-0002-1456-3088
FAUZIYAH
https://orcid.org/0000-0003-4119-8415
RIRIS ARYAWATI
https://orcid.org/0009-0009-0045-6650
NURHAYATI DAMIRI
ISNAINI
REDHO YOGA NUGROHO
https://orcid.org/0000-0002-7945-4982

Abstract

Abstract. Rozirwan, Khotimah NN, Putri WAE, Fauziyah, Aryawati R, Damiri N, Isnaini, Nugroho RY. 2023. Environmental risk assessment of Pb, Cu, Zn, and Cd concentrations accumulated in selected mangrove roots and surrounding their sediment. Biodiversitas 24: 6733-6742. Mangroves as the largest coastal ecosystem can accumulate heavy metals from their environment. This study aimed to evaluate the environmental risk associated with heavy metal pollution accumulated in the roots of mangroves and the surrounding sediments. The mangrove roots consisted of three species Sonneratia caseolaris, Rhizopora apiculata, and Xylocarpus granatum, collected from three observation stations within the Payung Island mangrove ecosystem in South Sumatra, Indonesia. The concentrations of heavy metals were determined using atomic absorption spectrometry. Statistical analysis employed one-way Analysis of Variance (ANOVA). At the same time, ecological risk assessment utilized the Bioconcentration Factor (BCF), Geoaccumulation Index (Igeo), Contamination factor (Cf), and Pollution Load Index (PLI). The highest sediment concentrations of heavy metals at station 3 were 12.786±0.26 mg/kg for Pb, 10.413±0.011 mg/kg for Cu, 42.752±0.053 mg/kg for Zn, and Cd was not detected. In mangrove roots, the highest concentrations were found in S. caseolaris, with 2.596±0.002 mg/kg for Pb and 11.881±0.015 mg/kg for Zn, while X. granatum exhibited 8.850±0.011 mg/kg for Cu and 0.160±0.020 mg/kg for Cd. BCF values <1 were categorized as exclusion, Igeo<0 indicated non-contamination, Cf<1 signified low pollution, and PLI<0 denoted an unpolluted status. Based on the results, the quality of the mangrove ecosystems affected by heavy metal pollution is currently considered safe regarding environmental risk assessment.

##plugins.themes.bootstrap3.article.details##

References
Akhtar N, Syakir Ishak MI, Bhawani SA, Umar K. 2021. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021 13 : 2660. DOI: 10.3390/W13192660.
Aljahdali MO, Alhassan AB. 2020. Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea. Saudi J Biol Sci 27(4): 1174–1184. DOI: 10.1016/j.sjbs.2020.02.004.
Almahasheer H. 2019. High levels of heavy metals in Western Arabian Gulf mangrove soils. Mol Biol Rep 46(2): 1585–1592. 10.1007/S11033-019-04603-2/METRICS.
Almahasheer H, Serrano O, Duarte CM, Irigoien X. 2018. Remobilization of heavy metals by mangrove leaves. Front Mar Sci 5(DEC): 1–10. DOI: 10.3389/fmars.2018.00484.
Almaniar S, Rozirwan, Herpandi. 2021. Abundance and diversity of macrobenthos at Tanjung Api-Api waters, South Sumatra, Indonesia. AACL Bioflux 14(3): 1486–1497.
Amos D, Akib S. 2023. A review of coastal protection using artificial and natural countermeasures—mangrove vegetation and polymers. Eng 2023 4(1): 941–953. DOI: 10.3390/ENG4010055.
Analuddin K, Sharma S, Jamili, Septiana A, Sahidin I, Rianse U, Nadaoka K. 2017. Heavy metal bioaccumulation in mangrove ecosystem at the coral triangle ecoregion, Southeast Sulawesi, Indonesia. Mar Pollut Bull 125(1–2): 472–480. DOI: 10.1016/J.MARPOLBUL.2017.07.065.
Antoniadis V, Golia EE, Liu YT, Wang SL, Shaheen SM, Rinklebe J. 2019. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ Int 124: 79–88. DOI: 10.1016/J.ENVINT.2018.12.053.
Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, Tjampakasari CR, Heryanto R, Ismail IS, Batubara I. 2022. Indonesian mangrove Sonneratia caseolaris leaves ethanol extract is a potential super antioxidant and anti methicillin-resistant Staphylococcus aureus. Drug 27(23): DOI: 10.3390/molecules27238369.
Awuku-Sowah EM, Graham NAJ, Watson NM. 2022. Investigating mangrove-human health relationships: A review of recently reported physiological benefits. Dialogues Heal 1: 100059. DOI: 10.1016/J.DIALOG.2022.100059
Bakshi M, Ram SS, Ghosh S, Chakraborty A, Sudarshan M, Chaudhuri P. 2017. Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban. Environ Monit Assess 189(5): 1–15. DOI: 10.1007/S10661-017-5891-9/METRICS.
Bhardwaj R, Gupta A, Garg JK. 2017. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci 31(1): 52–66. DOI: 10.1016/J.WSJ.2017.02.002.
Cahyaningsih AP, Deanova AK, Pristiawati CM, Ulumuddin YI, Kusumawati L, Setyawan AD. 2022. Review: causes and impacts of anthropogenic activities on mangrove deforestation and degradation in Indonesia. Int J Bonorowo Wetl 12(1): 12–22. DOI: 10.13057/bonorowo/w120102.
Castro E, Pinedo J, Marrugo J, León I. 2022. Retention and vertical distribution of heavy metals in mangrove sediments of the protected area swamp of Mallorquin, Colombian Caribbean. Reg Stud Mar Sci 49: 102072. DOI: 10.1016/J.RSMA.2021.102072.
Chai M, Li R, Ding H, Zan Q. 2019. Occurrence and contamination of heavy metals in urban mangroves: A case study in Shenzhen, China. Chemosphere 219: 165–173. DOI: 10.1016/J.CHEMOSPHERE.2018.11.160.
Chaudhuri P, Nath B, Birch G. 2014. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: The role of rhizosphere processes. Mar Pollut Bull 79(1–2): 284–292. DOI: 10.1016/j.marpolbul.2013.11.024.
Chedadi M, Amakdouf H, Barnossi A, Moussaoui A, Kara M, Asmi H, Merzouki M, Bari A. 2023. Impact of anthropogenic activities on the physicochemical and bacteriological quality of water along Oued Fez River (Morocco). Sci African 19: e01549. DOI: 10.1016/j.sciaf.2023.e01549.
Chowdhury R, Favas PJC, Jonathan MP, Venkatachalam P, Raja P, Sarkar SK. 2017. Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland. Mar Pollut Bull 124(2): 1078–1088. DOI: 10.1016/J.MARPOLBUL.2017.01.047.
De Oliveira Barbirato J, Ferreira N, Dobbss L. 2021. Effect of trace elements accumulation on mangrove ecosystem and their interaction with humic substances: The case of nickel and iron. Humic Subst. DOI: 10.5772/intechopen.96778.
Dey D, Quispe C, Hossain R, Jain D, Ahmed Khan R, Janmeda P, Islam MT, Ansar Rasul Suleria H, Martorell M, Da?tan SD, Kumar M, Taheri Y, Petkoska AT, Sharifi-Rad J. 2021. Ethnomedicinal use, phytochemistry, and pharmacology of Xylocarpus granatum J. Koenig. Evidence-Based Complement Altern Med 2021:. 10.1155/2021/8922196.
Dhalaria R, Kumar D, Kumar H, Nepovimova E, Kuca K, Islam MT, Verma R. 2020. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agron 10(6): 815. DOI: 10.3390/AGRONOMY10060815.
Dolagaratz Carricavur A, Chiodi Boudet L, Romero MB, Polizzi P, Marcovecchio JE, Gerpe M. 2018. Toxicological responses of Laeonereis acuta (Polychaeta, Nereididae) after acute, subchronic and chronic exposure to cadmium. Ecotoxicol Environ Saf 149: 217–224. DOI: 10.1016/j.ecoenv.2017.11.048.
Eribo O, Oterai SO, Inegbenijesu OB. 2021. Bioconcentration and translocation factors of heavy metals in Rhizophora racemosa and sediments from Egbokodo Mangrove Swamp, Delta State, Nigeria . African Sci J 22(4): 135–140. https://publications.africanscientistjournal.org/sites/default/files/2022-05/1486-5559-1-PB.pdf.
Fan CC, Lu JZ, Chen HH. 2021. The pullout resistance of plant roots in the field at different soil water conditions and root geometries. 207: 105593. 10.1016/J.CATENA.2021.105593
Fitria Y, Rozirwan, Fitrani M, Nugroho RY, Fauziyah, Putri WAE. 2023. Gastropods as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra, Indonesia. Acta Ecol Sin. DOI: 10.1016/J.CHNAES.2023.05.009
Gao Y, Qiao Y, Xu Y, Zhu L, Feng J. 2021. Assessment of the transfer of heavy metals in seawater, sediment, biota samples and determination the baseline tissue concentrations of metals in marine organisms.. Environ Sci Pollut Res Int 28(22): 28764–28776. DOI: 10.1007/S11356-021-12650-1.
Guo Z, Gao Y, Yuan X, Yuan M, Huang L, Wang S, Liu C, Duan C. 2023. Effects of heavy metals on stomata in plants: A Review. Int J Mol Sci 24(11):. DOI: 10.3390/IJMS24119302.
Hakanson L. 1980. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res 14(8): 975–1001. DOI: 10.1016/0043-1354(80)90143-8
Hanarisanty L, Sulistiyaning Titah H. 2019. Range finding phytotoxicity test of lead to mangrove plants of Rhizophora mucronata. J Tek ITS 8(2). DOI: 10.12962/j23373539.v8i2.49706
Henriques M, Granadeiro JP, Piersma T, Leão S, Pontes S, Catry T. 2021. Assessing the contribution of mangrove carbon and of other basal sources to intertidal flats adjacent to one of the largest West African mangrove forests. Mar Environ Res 169: 105331. DOI: 10.1016/J.MARENVRES.2021.105331
Hossain MB, Masum Z, Rahman MS, Yu J, Noman MA, Jolly YN, Begum BA, Paray BA, Arai T. 2022. Heavy metal accumulation and phytoremediation potentiality of some selected mangrove species from the world’s Largest mangrove forest. Biology (Basel) 11(8): 1144. DOI: 10.3390/BIOLOGY11081144/S1
Huang R, Zeng J, Zhao D, Cook KV, Hambright KD, Yu Z. 2020. Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnol Oceanogr 65(S1): S38–S48. DOI: 10.1002/lno.11325
Hummel CA, Mellink YAM, Bienfait LJ, Adamescu MC, Cazacu C, Heurich M, Medina FM, Mork?n? R, Švajda J, Hummel H. 2021. A practical novel assessment tool for the socio-ecological condition of Protected Areas: The Protection Level Index (PLI). J Nat Conserv 64: 126065. DOI: 10.1016/J.JNC.2021.126065
Jiang HH, Cai LM, Wen HH, Luo J. 2020. Characterizing pollution and source identification of heavy metals in soils using geochemical baseline and PMF approach. Sci Rep 10(1): 1–11. DOI: 10.1038/s41598-020-63604-5.
Kannan N, Thirunavukkarasu N, Suresh A, & Rajagopal, K. 2016. Analysis of heavy metals accumulation in mangroves and associated mangroves species of ennore mangrove ecosystem, East Coast India. Indian J Sci Technol 9(46): 1–12. DOI: 10.17485/ijst/2016/v9i46/101551
Khan WR, Aljahdali MO. 2022. Elemental composition of above and belowground mangrove tissue and sediment in managed and unmanaged compartments of the matang mangrove forest reserve. Plants 11(21): 2916. DOI: 10.3390/PLANTS11212916
Kumar M, Mohapatra S, Karim AA, Dhal NK. 2021. Heavy metal fractions in rhizosphere sediment vis-à-vis accumulation in Phoenix paludosa (Roxb.) mangrove plants at Dhamra Estuary of India: assessing phytoremediation potential. Chem Ecol 37(1): 1–14. DOI: 10.1080/02757540.2020.1836165.
Li J, Zuo Q, Feng F, Jia H. 2022. Occurrence and ecological risk assessment of heavy metals from Wuliangsuhai lake, yellow river basin, China. 14(8): 1–17. DOI: 10.3390/w14081264.
Lin Z, Zhong C, Yu G, Fu Y, Guan B, Liu Z, Yu J. 2021. Effects of sediments phosphorus inactivation on the life strategies of myriophyllum spicatum: Implications for lake restoration. 13(15). DOI: 10.3390/w13152112.
Long ER, MacDonald DD. 1998. Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess 4(5): 1019–1039. DOI: 10.1080/10807039891284956.
MacFarlane GR, Pulkownik A, Burchett MD. 2003. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: Biological indication potential. Environ Pollut. 123(1): 139–151. DOI: 10.1016/S0269-7491(02)00342-1.
Mariam H, Alamgir ANM. 2020. Micronutrient contents of heritiera fomes species at three saline zones of the sundarban mangrove forest, Bangladesh. Open Access Libr J 7(6): 1–9. DOI: 10.4236/OALIB.1106425.
Montgomery JM, Bryan KR, Horstman EM, Mullarney JC. 2018. Attenuation of Tides and Surges by mangroves: contrasting case studies from New Zealand. Water 2018 10(9): 1119. DOI: 10.3390/W10091119.
Muller G. 1979. Schwermetalle in den sedimenten des Rheins, VeranderungenSeit 1971. ScienceOpen. https://www.scienceopen.com/document?vid=879b4fc9-0fe1-44a4-8e33-b23cb9b12c98
Nazli, M. F., & Hashim, N. R. 2010. Heavy Metal Concentrations in an Important Mangrove Species, Sonneratia caseolaris, in Peninsular Malaysia. Environ Asia 3: 50–55.
Neel SH, Raymond A. 2023. The influence of the taphonomically active zone on peat formation: Establishing modern peat analogs to decipher mangrove sub-habitats from historical peats. Front Ecol Evol 11(February): 1–16. https://doi.org/10.3389/fevo.2023.981537.
Nguyen A, Le BVQ, Richter O. 2020. The role of mangroves in the retention of heavy metal (chromium): A simulation study in the Thi Vai River Catchment, Vietnam. Int J Environ Res Public Health 17(16): 1–22. DOI: 10.3390/IJERPH17165823.
Nguyen A, Richter O, Le BVQ, Phuong NTK, Dinh KC. 2020. Long-term heavy metal retention by mangroves and effect on its growth: A field inventory and scenario simulation. Int J Environ Res Public Health 17(23): 1–24. DOI: 10.3390/IJERPH17239131.
Nizam A, Meera SP, Kumar A. 2022. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. 25(1): 103547. DOI: 10.1016/J.ISCI.2021.103547.
Pejman A, Nabi Bidhendi G, Ardestani M, Saeedi M, Baghvand A. 2015. A new index for assessing heavy metals contamination in sediments: A case study. Ecol. Indic 58: 365–373. DOI: 10.1016/J.ECOLIND.2015.06.012.
Purwaningdyah AR, Takarina ND. 2020. Translocation Factor of Zinc (Zn) in water and sediment by root and stem of Rhizophora sp. At Blanakan Riparian, West Java. IOP Conf Ser Earth Environ Sci 550(1):. DOI: 10.1088/1755-1315/550/1/012006.
Purwiyanto AIS, Suteja Y, Trisno, Ningrum PS, Putri WAE, Rozirwan, Agustriani F, Fauziyah, Cordova MR, Koropitan, AF. 2020. Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Mar Pollut Bull 158: 111380. DOI: 10.1016/J.MARPOLBUL.2020.111380.
Rahman MS, Ahmed Z, Seefat SM, Alam R, Islam ARMT, Choudhury TR, Begum BA, Idris AM. 2022. Assessment of heavy metal contamination in sediment at the newly established tannery industrial Estate in Bangladesh: A case study. Environ Chem Ecotoxicol 4(October 2021): 1–12. DOI: 10.1016/j.enceco.2021.10.001.
Rapi HS, Awatif Che Soh N, Azam NSM, Maulidia M, Assaw S, Haron MN, Ali M, Idris I, Ismail WI. W. 2020. Effectiveness of aqueous extract of marine baitworm Marphysa moribidii Idris, Hutchings and Arshad, 2014 (Annelida, Polychaeta), on acute wound healing using sprague dawley Rats. Evid Based Complement Alternat Med. DOI: 10.1155/2020/1408926.
Razif M, Farhan I. 2017. A removal of Zn metal concentrate using Rhizophora apiculata mangrove plants. Asian J. Agric. Biol., 5(4): 328–336.
Rezaei M, Kafaei R, Mahmood M, Sanati AM, Vakilabadi DR, Arfaeinia H, Dobaradaran S, Sorial GA, Ramavandi B, Boffito DC. 2021. Heavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: Ecological and health risk assessment. Environ Nanotechnology Monit Manag 15(April): 100456. DOI: 10.1016/j.enmm.2021.100456.
Rizk R, Juzsakova T, Ben Ali M, Rawash MA, Domokos E, Hedfi A, Almalki M, Boufahja F, Shafik HM, Rédey Á. 2022. Comprehensive environmental assessment of heavy metal contamination of surface water, sediments and Nile Tilapia in Lake Nasser, Egypt. J King Saud Univ Sci 34(1): 101748. DOI: 10.1016/J.JKSUS.2021.101748.
Rodrigues-Filho JL, Macêdo RL, Sarmento HA, Pimenta VR, Alonso C, Teixeira CR, Pagliosa PR, Netto SA, L Santos NC, Daura-Jorge FG, Rocha O, Horta P, Branco JO, Sartor R, Muller J, Cionek VM, Ferreira V, Mauricio Bini L, Kovalenko KE, Alonso C. 2023. From ecological functions to ecosystem services: linking coastal lagoons biodiversity with human well-being. Hydrobiol 850(12): 2611–2653. DOI: 10.1007/S10750-023-05171-0.
Rozirwan R, Hananda H, Nugroho RY, Apri R, Khotimah NN, Fauziyah F, Putri WAE, Aryawati R. 2023. Antioxidant activity, total phenolic, phytochemical content, and hplc profile of selected mangrove species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. Trop J Nat Prod Res Available 7(7): 3482–3489.
Rozirwan R, Muhtadi M, Ulqodry TZ, Nugroho RY, Khotimah NN, Fauziyah F, Putri WAE, Aryawati R, Mohamed CAR. 2023. Insecticidal activity and phytochemical profiles of Avicennia marina and Excoecaria agallocha leaves extracts. ILMU Kelaut Indones J Mar Sci 28(June): 148–160. DOI: 10.14710/ik.ijms.28.2.148-160.
Rozirwan, Ramadani S, Putri WAE, Khotimah NN, Nugroho RY. 2023. Evaluation of calcium and phosphorus content in scallop shells (Placuna placenta) and blood cockle shells (Anadara granosa) from Banyuasin Waters, South Sumatra. Egypt J Aquat Biol Fish Zool Dep Fac Sci 27(3): 1053–1068.
Rozirwan, Saputri AP, Nugroho RY, Khotimah NN, Putri WAE, Fauziyah, Purwiyanto AIS. 2023. An Assessment of Pb and Cu in waters, sediments, and mud crabs (Scylla serrata) from mangrove ecosystem near Tanjung Api-Api Port Area, South Sumatra, Indonesia. Sci Technol Indones 8(4): 675–683. DOI: 10.26554/sti.2023.8.4.675-683.
Salimi L, Sezavar S, Agah H. 2019. Assessment of Cd, Ca, Zn, Cr, Al concentrations in water, sediment and tissues of mangrove forest, Avicennia marina from Qeshm Island, Persian gulf. Indian J Geo-Marine Sci, 48(6): 899–906.
Saputra A, Nugroho RY, Isnaini R, Rozirwan. 2021. A review: The potential of microalgae as a marine food alternative in Banyuasin Estuary, South Sumatra, Indonesia. Egypt J Aquat Biol Fish 25(2): 1053–1065. DOI: 10.21608/EJABF.2021.170654.
Shahee SM, Abdelrazek MAS, Elthoth M, Moghanm FS, Mohamed R, Hamza A, El-Habashi N, Wang J, Rinklebe J. 2019. Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Sci Total Environ 649: 1237–1249. DOI: 10.1016/J.SCITOTENV.2018.08.359
Shaheen SM, Shams MS, Khalifa MR, El-Dali MA, Rinklebe J. 2017. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol Environ Saf, 142: 375–387. DOI: 10.1016/J.ECOENV.2017.04.026.
Shamin-Shazwan K, Shahari R, Che Amri CNA, Kassim Z, Ahmad Z. 2021. Morphological Structures of Rhizophora apiculata blume. and Rhizophora mucronata Lam. Sci Herit J 5(1): 01–04. DOI: 10.26480/gws.01.2021.01.04.
Shou Y, Zhao J, Zhu Y, Qiao J, Shen Z, Zhang W, Han N, Núñez-Delgado A. 2022. Heavy metals pollution characteristics and risk assessment in sediments and waters: The case of Tianjin, China. Environ Res 212: 113162. DOI: 10.1016/J.ENVRES.2022.113162
Singh JK, Kumar P, Kumar R. 2020. Ecological risk assessment of heavy metal contamination in mangrove forest sediment of Gulf of Khambhat region, West Coast of India. SN Appl. Sci 2(12): 1–11. DOI: 10.1007/S42452-020-03890-W/TABLES/7
Smeds J, Öquist M, Nilsson MB., Bishop K. 2022. A Simplified Drying Procedure for Analysing Hg Concentrations. Water Air Soil Pollut., 233(6): 1–9. DOI: 10.1007/S11270-022-05678-7/TABLES/2
Susilowati DI, Affandi R, Sulistiono. 2022. Analysis of heavy metals content Hg, Cd, Pb, and Cu of green mussel Perna viridis (Linnaeus, 1758) in Bojonegara Coastal Waters of Banten Bay, Indonesia. IOP Conf. Ser. Earth Environ. Sci., 1083(1):. DOI: 10.1088/1755-1315/1083/1/012046
Takarina ND. 2020. Mangrove Root Diversity and Structure (cone, pencil, prop) Effectiveness in Accumulating Cu and Zn in Sediments and Water in River Blanakan. IOP Conf. Ser. Earth Environ. Sci., 550(1):. DOI: 10.1088/1755-1315/550/1/012009
Tatongjai S, Kraichak E, Kermanee P. 2021. Comparative anatomy and salt management of Sonneratia caseolaris (L.) Engl. (Lythraceae) grown in saltwater and freshwater. PeerJ, 9:. DOI: 10.7717/peerj.10962
Thanh-Nho N, Marchand C, Strady E, Huu-Phat N, Nhu-Trang TT. 2019. Bioaccumulation of some trace elements in tropical mangrove plants and snails (Can Gio, Vietnam). 248: 635–645. DOI: 10.1016/J.ENVPOL.2019.02.041
Xie Z, Zhu G, Xu M, Zhang H, Yi W, Jiang Y, Liang M, Wang Z. 2022. Risk assessment of heavy metals in a typical mangrove ecosystem - A case study of Shankou Mangrove National Natural Reserve, southern China. , 178: 113642. DOI: 10.1016/J.MARPOLBUL.2022.113642
Yan Z, Sun X, Xu Y, Zhang Q, Li X. 2017. Accumulation and Tolerance of Mangroves to Heavy Metals: a Review. Curr Pollut Reports 2017 34: 302–317. DOI: 10.1007/S40726-017-0066-4.
Yap CK, Al-Mutairi KA. 2023. Potentially toxic metals in the tropical mangrove non-salt secreting rhizophora apiculata: a field-based biomonitoring study and phytoremediation potentials. 14(2). DOI: 10.3390/f14020237.
Zhang C, Zhou X, Jiang J, Wei Y, Ma J, Hallett PD. 2019. Root moisture content influence on root tensile tests of herbaceous plants. 172: 140–147. DOI: 10.1016/J.CATENA.2018.08.012
Zhang H, Yang J, Li W, Chen Y, Lu H, Zhao S, Li D, Wei M, Li C. 2019. PuHSFA4a enhances tolerance to excess zinc by regulating reactive oxygen species production and root development in populus. Plant Physiol 180(4): 2254. DOI: 10.1104/PP.18.01495
Zhang Q, Ren F, Xiong X, Gao H, Wang Y, Sun W, Leng P, Li Z, Bai Y. 2021. Spatial distribution and contamination assessment of heavy metal pollution of sediments in coastal reclamation areas: a case study in Shenzhen Bay, China. Environ Sci Eur 33(1): 1–11. DOI: 10.1186/S12302-021-00532-9/TABLES/2
Zhong WS, Ren T, Zhao LJ. 2016. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. J Food Drug Anal 24(1): 46–55. DOI: 10.1016/J.JFDA.2015.04.010.

Most read articles by the same author(s)