Effect of three composts with active ingredients of Pseudomonas fluorescens on the development of white root disease and production of rubber plants




Abstract. Damiri N, Rofiqi R, Mulawarnam, Rahim SE, Febyanti TP. 2021. Effect of three composts with active ingredients of Pseudomonas fluorescens on the development of white root disease and production of rubber plants. Biodiversitas 22: 3237-3242. White root disease (WRD) caused by Rigidoporus lignosus is a very dangerous disease and a scourge for rubber farmers because it can result in decreased production and kill rubber plants. This research was conducted to observe the impact of compost enriched with the biological agent Pseudomonas fluorescens on the development of white root disease and production in rubber plants. The results showed that the application of compost with active ingredient of P. fluorescens isolates A and B reduced the severity of white root disease in plants with mild, moderate and severe infections, 34.12%, 29.31% and 57.21% respectively. Application of compost with P. fluorescens isolates A and B, either singly or in combination, can increase latex production. The treatment of giving compost enriched with P. fluorescens isolates AR and ABR on rubber plants infected with mild WRD resulted in the highest latex production of 406 gm and 402.74 gm per plant, respectively. These two treatments did not differ from each other but were significantly different from the other treatments and controls.


Alsohim, A. S. 2020. Influence of Pseudomonas fluorescens mutants produced by transposon mutagenesis on in vitro and in vivo biocontrol and plant growth promotion. Egyptian Journal of Biological Pest Control, 30(19):1–9. https://doi.org/10.1186/s41938-020-00220-5
Amaria, W., & Wardiana, E. 2014. The effect of application time and Trichoderma types on white root disease in rubber seedling. Jurnal TIDP, 1(2): 79–86. https://doi.org/10.21082/jtidp.v1n2.2014.p79-86
Dalimunthe, C. I., Tistama, R., Wahyuni, S., & Darwis, H. S. 2017. Development of serology technique for early detection of white root disease (Rigidoporus Microporus) in rubber plants. Indonesian J. Nat. Rubb Res, 35(2): 129–138. https://doi.org/dx.doi.org/10.22302/ppk.jpk.v3512.341
Damiri, N., Mulawarman, Umayah, A., Agustin, S. E., & Rahmiyah, M. 2017. Effect of Pseudomonas spp on infection of Peronospora parasitica (Pers. Fr), the pathogen of downy mildew on Chinese cabbage. IOP Conference Series: Earth and Environmental Science,102(1). https://doi.org/10.1088/1755-1315/102/1/012065
Fairuzah, Z., Dalimunthe, C. I., Karyudi, Suryaman, S., & Widhayati, W. E. 2014. The effectiveness of several antagonistic fungus (Trichoderma sp.) in Endohevea biofungicide to white root disease (Rigidoporus Microporus) in field scale. Indonesian J. Nat.Rubb. Res, 32(2):122–128.
Ganeshan, G., & Kumar, A. M. 2005. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3):123–134. https://doi.org/10.1080/17429140600907043
Gomez, K., & Gomez, A. (1984). Statisical Procedures For Agricultural Research Second Edition (Vol. 6). An International Rice Research Institute Book A Wiley Interscience Publication JOHN WILEY & SONS.
Habazar, T., Yanti, Y., & Ritonga, C. 2014. Formulation of indigenous rhizobacterial isolates from healthy Soybean’s root, which ability to promote growth and yield of Soybean. International Journal on Advanced Science, Engineering and Information Technology,4(5):377. https://doi.org/10.18517/ijaseit.4.5.438
Haggag, W. M., & Abo El Soud, M. 2012. Production and optimization of Pseudomonas fluorescens biomass and metabolites for biocontrol of strawberry grey mould. American Journal of Plant Sciences, 03(07):836–845. https://doi.org/10.4236/ajps.2012.37101
Khaeruni, A., Wahab, A., Taufik, M., & Sutariati, G. 2013. The Effectiveness of Application Time of Indigenous Rhizobacteria formulation to Control Fusarium Wilt and enhance of tomato yield in Ultisol soil . J. Hort., 23(4):365–371.
Malmierca, M. G., Cardoza, R. E., Alexander, N. J., McCormick, S. P., Hermosa, R., Monte, E., & Gutiérrez, S. 2012. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Applied and Environmental Microbiology, 78(14): 4856–4868. https://doi.org/10.1128/AEM.00385-12
Manjunatha, H., Naik, M. K., Patil, M. B., Lokesha, R., & Vasudevan, S. N. 2012. Isolation and characterization of native fluorescent pseudomonads and antagonistic activity against major plant pathogens. Karnataka J.Agric.Sci., 25(3), 346–349.
Manurung, L., Lubis, L., Marheni, M., & Dalimunthe, C. 2015. Testing of various types of active ingredients against white root disease (WRD) (Rigidoporus Microporus (Swartz:Fr.) whitout tillage area (WTA). J. Agroekoteknologi, 3(1), 168–178. https://doi.org/10.32734/jaet.v3i1.9379
Meyer, K. M., & Leveau, J. H. J. 2012. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia, 168: 621–629. https://doi.org/10.1007/s00442-011-2138-2
Nam, M. G., Wawa, N. S., Ejolle, E. E., & Nkengafac, N. J. 2017. Management of White Root Rot Disease (Fomes) in Hevea Brasiliensis plantations in Cameroon. American Journal of Plant Sciences, 8:1646–1658. https://doi.org/10.4236/ajps.2017.87114
Nasrun, & Burhanuddin. 2016. The efficacy evaluation of Pseudomonas fluorescens formulation to control bacterial wilt disease (Ralstonia solanacearum) on patchou. Bul. Littro, 27(1):67–76.
Nasrun, & Nurmansyah. 2015. Potency of Rizobakteria and botanical fungicidea to control white root fungus disease in rubber plant. JIDP 2(2):61–68.
Nawangsih, A. A., Aditya, R., Tjahjono, B., Negishi, H., & Suyama, K. 2012. Bioefficacy and characterization of plant growth promoting bacteria to control the bacterial wilt disease of peanut in Indonesia. Journal of the International Society for Southeast Asian Agricultural Sciences, 18(1): 185–192.
Ogbebor, N. O., Adekunle, A. T., Eghafona, O. N., & Ogboghodo, A. I. 2013. Incidence of Rigidoporus lignosus (Klotzsch) Imaz of Para rubber in Nigeria. Researcher, 5(12):181–184.
Panpatte, D. G., Jhala, Y. K., Shelat, H. N., & Vyas, R. V. 2016. Pseudomonas fluorescens: A Promising Biocontrol Agent and PGPR for Sustainable Agriculture. Microbial Inoculants in Sustainable Agricultural Productivity, February:257–270. https://doi.org/10.1007/978-81-322-2647-5
Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. 2010. Antagonistic mechanisms study of Pseudomonas Fluorescens P60 on Fusarium oxysporum f.sp. lycopersici in Vivo. J. HPT Tropika, 10(2): 108–115.
Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. 2014. Liquit formula application of Pseudomonas fluorescens P60 for suppressing viral disease of chilli pepper. Jurnal Fitopatologi Indonesia, 9(6):179–185. https://doi.org/10.14692/jfi.9.6.179
Tangonan, N., Pecho, J., & Butardo, E. (2008). Techo guide on disease of rubber and their management. DA-Bureu of Agricultural research,. University of Southern Mindanao, Kebacan,Cotabato.
Toua, D., Messaoud, B., Bensid, F., & Bakour, R. 2013. Evaluation of Pseudomonas fluorescens for the biocontrol of fusarium wilt in tomato and flax. African Journal of Microbiology Research, 7(48): 5449–5458. https://doi.org/10.5897/ajmr12.2019
Triwahyu, E., & Suryaminarsih, P. 2009. Map of disease of perdu plant (ornamental plant) in green opening space (RTH) Urabaya city. National Seminar 'Acceleration of agriculture technology development in supporting agriculture revitalization', 1–6.
Wahyuni, T., Mulawarman, & Damiri, N. 2015. Population dynamics of rhizobacteria and its potency as a biological control agent to control fusarium disease in the nursery of agarwood (Aquailaria malaccensis Lamrk). Agrivita, 37(37):276–283. https://doi.org/10.17503/Agrivita-2015-37-3-p276-284
Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. 2011. Fungicide: Modes of Action and Possible Impact on Nontarget Microorganisms. ISRN Ecology, 2011:1–8. https://doi.org/10.5402/2011/130289
Yendyo, S., G.C., R., & Pandey, B. R. 2018. Evaluation of Trichoderma spp., Pseudomonas fluorescence and Bacillus subtilis for biological control of Ralstonia wilt of tomato. F1000Research, 6:2028. https://doi.org/10.12688/f1000research.12448.1