Species diversity, abundance, and movement of small mammals in the dry evergreen forest at Khao Yai National Park, Thailand

##plugins.themes.bootstrap3.article.main##

YUWALUK CHANACHAI
ANUTTARA NATHALANG
PRATEEP DUENGKAE
RONGLARP SUKMASUANG

Abstract


Abstract. Chanachai Y, Nathalang A, Duengkae P, Sukmasuang R. 2022. Species diversity, abundance, and movement of small mammals in the dry evergreen forest at Khao Yai National Park, Thailand. Biodiversitas 23: 5892-5901. Small mammals play an integral role in the forest ecosystem. This research was conducted on The Mo Singto Forest Dynamics Plot, Khao Yai National Park. Trapping of small mammals was carried out in June-September 2019 and from January-April 2020 based on a total of 64 Tomahawk for small mammal live traps were systematically placed in an 8×8 grid of 20 m intervals, ripe bananas and palm oil as bait was used. Trap cages were opened for 3 consecutive months per season in each study period covering a total study period of 1 year. The result showed that a total of 4015 individuals from 9 species, 9 genera, 4 families and 3 orders were captured with a sampling effort of 32,555 trap nights. The most common species were Red Spiny Rat (Maxomys surifer), followed by Northern Tree Shrew (Tupaia belangeri), Long-tailed Giant Rat (Leopoldamys sabanus), Indochinese Ground Squirrel (Menetes berdmorei), Asian House Rat (Rattus tanezumi), Indomalayan Niviventer (Niviventer fulvescens), Savile's Bandicoot Rat (Bandicota savilei), (Tamiops mcclellandii), and Short-tailed Gymnure (Hylomys suillus) respectively. Considering the number of small mammals caught, Maxomys surifer was the most abundant, accounting for 61.69% of all mammals caught. The sex ratio was found to somewhat favor females in both seasons. This study indicated that the small mammal diversity was high in the primary dry evergreen forest. These results have important implications not only for conservation but are also useful for further investigation if there is any disturbance or change in the area or any potential disasters that may occur in the future.


##plugins.themes.bootstrap3.article.details##

References
Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng X, Detto M, Du X, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao Z, Hargrove WW, Hart TB, Hau BCH, He F, Hoffman FM, Howe RW, Hubbell SP, Narahari FMI, Jansen PA, Jiang M, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li Y, Li X, Liu S, Lum SKY, Lutz JA, Ma K, Maddalena DM, Makana JR, Malhi Y, Marthews T, Serudin RM, McMahon SM, McShea WJ, Memiaghe HR, Mi X, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang W, Sri-ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI,Vicentini A, Vrška T, Wang X,Wang X, Weiblen G,Wolf A,Xu H, Yap S, Zimmerman J.2015. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21(2): 528-549. DOI.org/10.1111/gcb.12712
Ardente NC, Ferreguetti AC, Gettinger D, Leal P, Martins-Hatano F, Bergallo HG. Differencial efficiency of two sampling methods in capturing non-volant small mammals in an area in eastern Amazonia. Acta Amazon 47(2): 123-132. DOI.org/10.1590/1809-4392201602132
Aronson MFJ, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, Goddard MA, Hahs AK, Herzog C, Katti M, Sorte FAL, Williams NSG, Zipperer W. 2016. Hierarchical filters determine community assembly of urban species pools. Ecology 97(11): 2952-2963. DOI.org/10.1002/ecy.1535
Bantihun G, Bekele A. 2015. Population structure of small mammals with different seasons and habitats in Arditsy Forest, Awi Zone, Ethiopia. IJBC 7(8):378-387. DOI:10.5897/IJBC2015.0858
Brockelman WY, Nathalang A, Maxwell JF. 2017. Mo Singto Forest Dynamics Plot: Flora and Ecology. National Science and Technology Development Agency, and Department of National Parks, Wildlife and Plant Conservation, Bangkok. www.waa.inter.nstda.or.th/stks/pub/2019/20190722-mo-singto-forest-dynamics-plot.pdf
Christie AP, Amano T, Martin PA, Shackelford GE, Simmons BI, Sutherland WJ. 2019. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56(12): 2742-2754. DOI.org/10.1111/1365-2664.13499
Dahmana H, Granjon L, Diagne C, Davoust B, Florence Fenollar F, Oleg Mediannikov O. 2020. Rodents as Hosts of Pathogens and Related Zoonotic Disease Risk. Pathogens 9(3): 202 DOI.org/10.3390/pathogens9030202
Fischer C, Gayer C, Kurucz K, Riesch F, Tscharntke T, Batáry P. 2017. Ecosystem services and disservices provided by small rodents in arable fields: Effects of local and landscape management. J. Appl. Ecol. 55(2): 548-558. DOI. org/10.1111/1365-2664.13016
Francis CM. 2019. Field Guide to the Mammals of South-east Asia (2nd Edition). Bloomsbury Publishing, London.
Fuentes-Montemayor E, Cuarón AD, Vázquez-Domínguez E, Benítez-Malvido J, Valenzuela-Galván D, Andresen E. 2009. Living on the edge: roads and edge effects on small mammal populations. J. Anim. Ecol. 78(4): 857-865. DOI.org/10.1111/j.1365-2656.2009.01551.x
IUCN 2022. The IUCN Red List of Threatened Species. Version 2022-1. www.iucnredlist.org
Kang JH, Son SH, Kim KJ, Hwang HS, Rhim SJ. 2013. Effects of logging intensity on small rodents in deciduous forests. J. Anim. Vet. Adv. 12: 248-252.
Khoewsree N, Charaspet K, Sukmasuang R, Songsasen N, Pla-ard M, Thongbantum J, Kongchaloem W, Srinopawan K. 2020. Abundance, prey, and activity period of dholes (Cuon alpinus) in Khao Yai National Park, Thailand. Biodiversitas 21(1): 345-354. DOI.org/10.13057/biodiv/d210142
Khoewsree N, Pla-ard M, Sukmasuang R, Paansri P, Chanachai Y, Kaewdee B, Phengthong P. 2022. Spatio-temporal analysis of dholes (Cuon alpinus) in Khao Yai National Park, Thailand. Biodiversitas 23(5): 2668-2678. DOI.org/10.13057/biodiv/d230551
Krebs CJ. 1989. Ecological Methodology. New York, NY: Harper and Row Publishers Inc.
Lima DO, Braun LGA, Skupien FL, Rodrigues DP, Sausen JO. 2021. Movement distances for four small mammals in two Atlantic forests fragments, Southern Brazil. Neotrop. Biol. Conserv. 16(1): 11–18. DOI:10.3897/neotropical.16.e59669
Loretto D, Vieira MV. 2005. The Effects of Reproductive and Climatic Seasons on Movements in the Black-Eared Opossum (Didelphis aurita Wied-Neuwied, 1826). J. Mammal. 86(2): 287–293. DOI.org/10.1644/BEH-117.1
Magurran AE. 2007. Species abundance distributions over time. Ecol. Lett. 10(5): 347-354. DOI.org/10.1111/j.1461-0248.2007.01024.x
McKnight DT, Ligon DB. 2017. Correcting for unequal catchability in sex ratio and population size estimates. PLoS One. 12(8):e0184101. DOI: 10.1371/journal.pone.0184101.
Naxara L, Pinotti BT, Pardini R. Seasonal Microhabitat Selection by Terrestrial Rodents in an Old-Growth Atlantic Forest. J. Mammal. 90(2): 404–415. DOI.org/10.1644/08-MAMM-A-100.1
R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org/
Ramahlo M, Somers MJ, Hart DW, Ganswindt A. 2022. Small Mammal Diversity in Response to Land Transformation and Seasonal Variation in South Africa. Diversity 14(138): 1-12. DOI.org/10.3390/d14020138
Shilereyo M, Magige FJ, Ranke PS, Ogutu JO, Røskaft E. 2022. Ectoparasite load of small mammals in the Serengeti Ecosystem: effects of land use, season, host species, age, sex and breeding status. Parasitol. Res. 121(20002). DOI: 10.1007/s00436-022-07439-1
Simelane FN, Mahlaba TAM, Shapiro JT, Duncan MacFadyen D, Monadjem A. 2018. Habitat associations of small mammals in the foothills of the Drakensberg Mountains, South Africa. Mammalia 82(2): 144–152. DOI.org/10.1515/mammalia-2016-0130
Singleton GR, Lorica RP, Htwe NM, Stuart AM. 2021. Rodent management and cereal production in Asia: Balancing food security and conservation. Pest Manag. Sci.77 (10): 4249-4261. DOI.org/10.1002/ps.6462
Sutherland C, Royle JA, Linden DW. 2019. oSCR: a spatial capture– recapture R package for inference about spatial ecological processes. Ecography 42 (9): 1459-1469. DOI.org/10.1111/ecog.04551
Suzuki S, Kitamura S, Kon M, Poonswad P, Chuailua P, Plongmai K, Yumoto T, Noma N, Maruhashiand T, Wohandee P. 2007. Fruit visitation patterns of small mammals on the forest floor in a tropical seasonal forest of Thailand. Tropics 16(1): 17-29. DOI.org/10.3759/tropics.16.17
Tenan S, Vallespir AR, Igual JM, Moya O, Royle JA, Tavecchia G. 2013. Population abundance, size structure and sex-ratio in an insular lizard. Ecol. Modell. 267: 39-47. DOI.org/10.1016/j.ecolmodel.2013.07.015.
UNESCO. 2022. Dong Phayayen-Khao Yai Forest Complex. www.whc.unesco.org/en/list/590/
Vandamme TF. 2014. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 6(1): 2-9. DOI: 10.4103/0975-7406.124301
Witmer G, Shiels A. 2018. Ecology, impacts, and management of invasive rodents in the United States. In: W. Pitt, J. Beasley, G. Witmer (eds). Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States. CRC Press, Boca Raton, Florida, USA.
Wróbel A, Bogdziewicz M. 2015. It is raining mice and voles: which weather conditions influence the activity of Apodemus flavicollis and Myodes glareolus? Eur. J. Wildl. Res. 61:475–478. DOI 10.1007/s10344-014-0892-2

Most read articles by the same author(s)

1 2 3 > >>