Short Communication: First report of Xanthomonas sacchari causing rice sheath rot disease in Lampung, Indonesia




Abstract. Ivayani, Widiastuti A, Suryanti, Suharjo R, Priyatmojo A. 2022. Short Communication: First report of Xanthomonas sacchari causing rice sheath rot disease in Lampung, Indonesia. Biodiversitas 23: 6463-6470. Rice sheath rot is recently reported as an emerging important rice disease in Indonesia, which can cause yield losses of up to 85%. Due to its potential loss, serious attention should be given on the disease. However, there is still limited information on the causal agent of the disease in Indonesia, especially from plant pathogenic bacteria. One bacterial isolate (LSE 33) was obtained from the sheath rot symptom of rice. Pathogenicity test revealed that bacteria produced symptoms that were similar to those obtained from the field. Based on the sequence analysis of 16S rRNA gene region, isolate LSE 33 was placed within group of the type strain and reference strains of Xanthomonas sacchari. Strain LSE 33 had 99.93% sequence similarity with Xanthomonas sacchari strain SAM 144 and strain AF 10 isolated from rice, and 99.35% similarity with strain LMG 471T isolated from sugarcane. To our knowledge, this is the first report of X. sacchari causing sheath rot on rice in Indonesia.


Abbas HK, Cartwright RD, Shier WT, Abouzied MM, Bird CB, Rice LG, Ross PF, Sciumbato GL, Meredith FI. 1998. Natural occurrence of fumonisins in rice with Fusarium sheath rot disease. Plant Dis. 82: 22–25. DOI: 10.1094/PDIS.1998.82.1.22.
Bigirimana V de P, Hua GKH, Nyamangyoku O I, Höfte M. 2015. Rice sheath rot: An emerging ubiquitous destructive disease complex. Front. Plant Sci. 6:1066. DOI: 10.3389/fpls.2015.01066.
Bills GF, Platas G, Gams W. 2004. Conspecificity of the cerulenin and helvolic acid producing “Cephalosporium caerulens,” and the hypocrealean fungus Sarocladium oryzae. Mycol. Res. 108:1291–1300. DOI: 10.1017/S0953756204001297
Bradbury JF. 1970. Isolation and preliminary study of bacteria from plants. Rev. Pl. Path. 49(5): 213-218. DOI: 10.1080/09670877009413430
Chen H, Singh H, Bhardwaj N, Bhardwaj SK, Khatri M, Kim KH, Peng W. 2020. An exploration on the toxicity mechanisms of phytotoxins and their potential utilities. Cret. Rev. Environ. Sci. Technol. 1–2. DOI: 10.1080/10643389.2020.1823172
Dickey RS. 1979. Erwinia chrysanthemi: a comparative study of phenotypic properties of strains from several hosts and other Erwinia species. Phytopathology 69: 324–329.
Ham JH, Melanson RA, Rush MC. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12: 329–339. DOI: 10.1111/j.1364-3703.2010.00676.x
Hugh R, Leifson E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. Journal of Bacteriology 66: 24–26. DOI: 10.1128/jb.66.1.24-26.1953
King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine 44: 301–307. PMID: 13184240.
Lelliot RA, Billing E, Hayward AC. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology 29: 470–489. DOI: : 10.1111/j.1365-2672.1966.tb03499.x.
Ministry of Agriculture. 2019. act=view&id=61. Diakses tanggal 13 oktober 2020.
Mirghasempour SA, Huang S, Studholme DJ, Brady CL. 2020. A grain rot of rice in Iran caused by a Xanthomonas Strain closely related to X. sacchari. Plant Dis. 2020 Jun;104(6):1581-1583. doi: 10.1094/PDIS-01-20-0179-SC.
Mvuyekure SM, Sibiya J, Derera J, Nzungize J, Nkima G. 2017. Genetic analysis of mechanisms associated with inheritance of resistance to sheath rot of rice. Plant Breeding, 136(4): 509–515. doi:10.1111/pbr.12492.
Nandakumar R, Shahjahan AKM, Yuan XL, Dickstein ER, Groth DE, Clark CA, Cartwright RD, Rush MC. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the Southern United States. Plant Dis. 93(9):896-905. DOI: 10.1094/PDIS-93-9-0896.
Ortega L, Rojas CM. 2021. Bacterial panicle blight and Burkholderia glumae: from Pathogen biology to disease control. Phytopathology. 111(5):772-778. DOI: 10.1094/PHYTO-09-20-0401-RVW.
Pontes JGM, Fernandes LS, Dos Santos, RV, Tasic L, Fill TP. 2020. Virulence factors in the phytopathogen-host interactions: An overview. J. Agric. Food Chem. 68: 7555–7570. DOI: 10.1021/acs.jafc.0c02389.
Pramunadipta S, Widiastuti A, Priyatmojo A. 2017. Environmental factors affecting the severity of sheath rot disease (Sarocladium oryzae and Fusarium spp.) on paddy. Abstract. 2nd International Conference of Tropical Agriculture. Sustainable Tropical Agriculture Symposium. Yogyakarta, Indonesia, 26- 27 October 2017.
Pramunadipta S, Widiastuti A, Wibowo A, Suga H, Priyatmojo A. 2020. Short Communication: Sarocladium oryzae associated with sheath rot disease of rice in Indonesia. Biodiversitas 21: 1243–1249. DOI: 10.13057/biodiv/d210352 .
Pramunadipta S, Widiastuti A, Wibowo A, Suga H, Priyatmojo A. 2021. Identification and pathogenicity of Fusarium spp. associated with the sheath rot disease of rice (Oryza sativa) in Indonesia. J Plant Pathol. 104: 251–267. DOI: 10.1007/s42161-021-00988-x.
Pramunadipta S, Widiastuti A, Wibowo A, Suga H, Priyatmojo A. 2022. Development of PCR-RFLP technique for identify several members of Fusarium incarnatum-equiseti species complex and Fusarium fujikuroi species complex. Plant Pathol J. 38(3):254–260. DOI: 10.5423/PPJ.NT.12.2021.0184 .
Riera-Ruiz C, Vargas J, Cevallos-Cevallos JM, Ratti M, Peralta EL. 2014. First Report of bacterial panicle blight of rice caused by Burkholderia gladioli in Ecuador. Plant Dis. 98(11):1577. doi: 10.1094/PDIS-03-14-0222-PDN.
Rivero-González D, Corzo M, Plasencia O, Cruz A, Martínez B, & Martínez Y. 2017. Characterization and diagnosis of Pseudomonas fuscovaginae Miyajima, Tanii and Akita, causal agent of the brown sheath rot in rice. Biotecnología Aplicada 34:2101-2108.
Ryu E. 1940. A simple method of differentiation between grampositive and gram-negative organism without staining. Kitasato Archives of Experimental Medicine 17: 58–63.
Schaad NW, Jones JB, Chun W. 2001: Laboratory Guide for Identification of Plant Pathogenic Bacteria. Minnesota, APS Press.
Society of American Bacteriologists. 1957. Manual of Microbiological Methods. Conn H.J. (ed.). New York, McGraw-Hill Book Co.
Suharjo R, Sawada H, Takikawa Y. 2014. Phylogenetic study of Japanese Dickeya spp. and development of new rapid identification methods using PCR-RFLP. Journal of General Plant Pathology 80: 230–254. DOI: 10.1007/s10327-014-0511-9.
Tamura, K., Stecher, G. and Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022–3027. DOI: 10.1093/molbev/msab120.
Tanii A, Miyajima K, Akita T. 1976. The sheath brown rot disease of rice plant and its causal bacterium, Pseudomonas fuscovaginae A. Tanii, K. Miyajima et T. Akita sp. nov. Jpn J. Phytopathol. 42:540–548. DOI: 10.3186/jjphytopath.42.540.
Weisberg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J.Bacteriol 173 (2): 679-703. DOI: 10.1128/jb.173.2.697-703.1991 .

Most read articles by the same author(s)

1 2 > >>