Detection of homozygous wildtype V1016V using allele-specific polymerase chain reaction in Aedes albopictus

##plugins.themes.bootstrap3.article.main##

AHMAD RUDI SETIAWAN
SYANANDA ZAHRA FADILA
TEGUH HARI SUCIPTO
SHIFA FAUZIYAH
SAFIRA MADANIYAH
ERYANTIKA CIPTA DEWI
SIN WAR NAW
TUKIRAN
SARI EDI CAHYANINGRUM

Abstract


Abstract. Setiawan AR, Fadila SZ, Sucipto TH, Fauziyah S, Madaniyah S, Dewi EC, Naw SW, Tukiran, Cahyaningrum SE. 2023. Detection of homozygous wildtype V1016V using allele-specific polymerase chain reaction in Aedes albopictus. Biodiversitas 24: 62-67. Aedes sp. is a carrier of several viruses that can infect humans and cause diseases such as zika, yellow fever, chikungunya, and dengue fever. Symptoms of dengue infection vary, consisting of classic dengue fever (DD), dengue hemorrhagic fever (DHF), and dengue shock syndrome. Insecticide spray can be used to manage Aedes mosquitoes chemically. Insecticide substances target nervous system proteins. Voltage-gated sodium channels (VGSC) are rendered inactive by pyrethroid binding. Knockdown is a signal indicating an insect has been knocked down in response to a specific insecticide. However, using insecticides for a long time can cause mosquitoes to become resistant. The pesticide resistance of mosquitoes is known as knockdown resistance (kdr). This study aims to detect kdr mutations (V1016G) in two male Aedes albopictusmosquitos named A1 and A2 collected from settlements in Kranggan, Sawahan, Surabaya, East Java, Indonesia, using allele-specific polymerase chain reaction (AS-PCR) assay. RNA was extracted from the two mosquito samples using an RNA extraction kit. After that, the extracted RNA was tested for kdr mutations using the AS-PCR method. After assaying, both samples are homozygous wildtype (V1016V) because the results showed bands appearing from samples A1 and A2 at 60 bp. On the other hand, this study has the potential to serve as preliminary monitoring for the program controlling vectors.


##plugins.themes.bootstrap3.article.details##

References
Al-Amin HM, Johora FT, Irish SR, Hossainey MRH, Vizcaino L, Paul KK, Khan WA, Haque R, Alam MS, Lenhart A . 2020. Insecticide resistance status of Aedes aegypti in Bangladesh. Parasit Vectors 13:1–15. DOI: 10.1186/s13071-020-04503-6.
Arisanti M, Hapsari Suryaningtyas N, Penelitian dan Pengembangan Kesehatan Baturaja Jl AYani BK, Baturaja K, Ogan Komering Ulu K, Selatan S. 2021. Kejadian demam berdarah dengue (DBD) di Indonesia tahun 2010-2019. Kejadian Demam Berdarah 13:34–41. DOI: 10.22435/spirakel.v13i1.5439.
Athanassiou CG, Kavallieratos NG, Arthur FH, Nakas CT. 2021. Rating knockdown of flour beetles after exposure to two insecticides as an indicator of mortality. Sci Rep 11. DOI: 10.1038/s41598-020-78982-z.
Balaska S, Fotakis EA, Kioulos I, Grigoraki L, Mpellou S, Chaskopoulou A, Vontas J. 2020. Bioassay and molecular monitoring of insecticide resistance status in Aedes albopictus populations from Greece, to support evidence-based vector control. Parasit Vectors 13. DOI: 10.1186/s13071-020-04204-0.
Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, Vontas J, Field LM. 2007. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: A comparison of two new high-throughput assays with existing methods. Malar J 6. DOI: 10.1186/1475-2875-6-111.
Dania IA. 2016. Gambaran penyakit dan vektor demam berdarah dengue (DBD). Warta Dharmawangsa 0:1829–7463. DOI: 10.46576/WDW.V0I48.179.
Djiappi-Tchamen B, Nana-Ndjangwo MS, Mavridis K, Talipouo A, Nchoutpouen E, Makoudjou I, Bamou R, Mayi AMP, Awono-Ambene P, Tchuinkam T, Vontas J, Antonio-Nkondjio C. 2021. Analyses of insecticide resistance genes in aedes aegypti and aedes albopictus mosquito populations from cameroon. Genes (Basel) 12:1–13. DOI: 10.3390/genes12060828.
Faridah L, Rinawan FR, Fauziah N, Mayasari W, Dwiartama A, Watanabe K. 2020. Evaluation of health information system (HIS) in the surveillance of dengue in Indonesia: Lessons from case in Bandung, West Java. Int J Environ Res Public Health 17. DOI: 10.3390/ijerph17051795.
Ferreira-De-Lima VH, Lima-Camara TN. 2018. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: A systematic review. Parasit Vectors 11.
Field LM, Emyr Davies TG, O’Reilly AO, Williamson MS, Wallace BA. 2017. Voltage-gated sodium channels as targets for pyrethroid insecticides. European Biophysics Journal 46:675–679. DOI: 10.1007/s00249-016-1195-1.
Gan SJ, Leong YQ, bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. 2021. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors 14.
Giri Putra LA, Yonathan CJ, Niedhatrata NI, Rizka Firdaus MH, Yoewono JR. 2020. A review of the development of Polymerase Chain Reaction technique and its uses in Scientific field. Stannum?: Jurnal Sains dan Terapan Kimia 2:14–30. DOI: 10.33019/jstk.v2i1.1619.
Haryanto B. 2018. Indonesia Dengue Fever: Status, Vulnerability, and Challenges. In: Current Topics in Tropical Emerging Diseases and Travel Medicine. IntechOpen.
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Da?tan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. 2021. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. Biomed Res Int 2021.
Karyanti MR, Uiterwaal CSPM, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, Hoes AW, Bruijning-Verhagen P. 2014. The changing incidence of Dengue Haemorrhagic Fever in Indonesia: A 45-year registry-based analysis. BMC Infect Dis 14. DOI: 10.1186/1471-2334-14-412.
Kauffman E, Payne A, Franke M, Schmid M, Harris E, Kramer L. 2017. Rearing of Culex spp. and Aedes spp. Mosquitoes. Bio Protoc 7. DOI: 10.21769/bioprotoc.2542.
Kushwah RBS, Kaur T, Dykes CL, Ravi Kumar H, Kapoor N, Singh OP. 2020. A new knockdown resistance (kdr) mutation, F1534L, in the voltage-gated sodium channel of Aedes aegypti, co-occurring with F1534C, S989P and V1016G. Parasit Vectors 13:1–12. DOI: 10.1186/s13071-020-04201-3.
Marcombe S, Chonephetsarath S, Thammavong P, Brey PT. 2018. Alternative insecticides for larval control of the dengue vector Aedes aegypti in Lao PDR: Insecticide resistance and semi-field trial study. Parasit Vectors 11. DOI: 10.1186/s13071-018-3187-8.
Nasir S, Ahmed I, Hussain B, Ijaz MU, Hafeez F, Wadaan MA, Atique U, Mahboob S. 2021. A study on the role of aedes mosquitoes in arboviruses and SARS-CoV-2 infection: A new challenge. J King Saud Univ Sci 34. DOI: 10.1016/j.jksus.2022.102179.
Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. 2021. A review: Aedes-borne arboviral infections, controls and wolbachia-based strategies. Vaccines (Basel) 9:1–23.
Pareja-Loaiza PX, Varon LS, Vega GR, Gómez-Camargo D, Maestre-Serrano R, Lenhart A. 2020. Mechanisms associated with pyrethroid resistance in populations of aedes aegypti (Diptera: Culicidae) from the Caribbean Coast of Colombia. PLoS One 15. DOI: 10.1371/journal.pone.0228695.
Pratiwi R, Anwar C, Salni, Hermansyah, Novrikasari, Ghiffari A, Putra R, Huda A. 2019. Species diversity and community composition of mosquitoes in a filariasis endemic area in Banyuasin District, South Sumatra, Indonesia. Biodiversitas 20:453–462. DOI: 10.13057/biodiv/d200222.
Ranjit S, Kissoon N. 2011. Dengue hemorrhagic fever and shock syndromes. Pediatric Critical Care Medicine 12:90–100.
Sasmono RT, Wahid I, Trimarsanto H, Yohan B, Wahyuni S, Hertanto M, Yusuf I, Mubin H, Ganda IJ, Latief R, Bifani PJ, Shi PY, Schreiber MJ. 2015. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. Infection, Genetics and Evolution 32:165–177. DOI: 10.1016/j.meegid.2015.03.006.
Satoto TBT, Pascawati NA, Wibawa T, Frutos R, Maguin S, Mulyawan IK, Wardana A. 2020. Entomological index and home environment contribution todengue hemorrhagic fever in Mataram City, Indonesia. Kesmas 15:32–39. DOI: 10.21109/kesmas.v15i1.3294.
Setiati TE, Wagenaar JFP, de Kruif MD, Mairuhu ATA, van Gorp ECM, Soemantri A. 2006. Changing Epidemiology of Dengue Haemorrhagic Fever in Indonesia.
Silalahi CN, Tu WC, Chang NT, Singham GV, Ahmad I, Neoh KB. 2021. Insecticide Resistance Profiles and Synergism of Field Aedes aegypti from Indonesia. PLoS Negl Trop Dis 16. DOI: 10.1371/JOURNAL.PNTD.0010501.
Sombié A, Saiki E, Yaméogo F, Sakurai T, Shirozu T, Fukumoto S, Sanon A, Weetman D, McCall PJ, Kanuka H, Badolo A. 2019. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso. Trop Med Health 47:4–11. DOI: 10.1186/s41182-018-0134-5.
Stenhouse SA, Plernsub S, Yanola J, Lumjuan N, Dantrakool A, Choochote W, Somboon P. 2013. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasit Vectors 6:1–10. DOI: 10.1186/1756-3305-6-253.
Tricou V, Sáez-Llorens X, Yu D, Rivera L, Jimeno J, Villarreal AC, Dato E, Saldaña de Suman O, Montenegro N, DeAntonio R, Mazara S, Vargas M, Mendoza D, Rauscher M, Brose M, Lefevre I, Tuboi S, Borkowski A, Wallace D. 2020. Safety and immunogenicity of a tetravalent dengue vaccine in children aged 2–17 years: a randomised, placebo-controlled, phase 2 trial. The Lancet 395:1434–1443. DOI: 10.1016/S0140-6736(20)30556-0.
Vu TX, Andrianov B v., Vu DC, Goryacheva II. 2020. qPCR Identification of the kdr Allele F1534C in Voltage-Gated Sodium Channel Gene (vgsc) of the Major Mosquito Vectors Aedes aegypti and Aedes albopictus in Northern and Central Vietnam. Russ J Genet 56:460–469. DOI: 10.1134/S1022795420040158.
World Health Organization. 2009. Dengue guidelines for diagnosis, treatment, prevention and control treatment, prevention and control treatment, prevention and control. World Health Organization, Geneva.
Wu Y, Liu Q, Qi Y, Wu Y, Ni Q, Chen W, Wang J, Li T, Luo M, Hou J, Gong Z, Sun J. 2021. Knockdown Resistance (kdr) Mutations I1532T and F1534S Were Identified in Aedes albopictus Field Populations in Zhejiang Province, Central China. Front Cell Infect Microbiol 11. DOI: 10.3389/fcimb.2021.702081.
Wuliandari JR, Hoffmann AA, Tantowijoyo W, Endersby-Harshman NM. 2020. Frequency of kdr mutations in the voltage-sensitive sodium channel (V SSC) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials. Parasit Vectors 13:1–15. DOI: 10.1186/s13071-020-04304-x.
Wuliandari JR, Lee SF, White VL, Tantowijoyo W, Hoffmann AA, Endersby-Harshman NM. 2015. Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in aedes aegypti from yogyakarta, Indonesia. Insects 6:658–685. DOI: 10.3390/insects6030658.
Yougang AP, Kamgang B, Bahun TAW, Tedjou AN, Nguiffo-Nguete D, Njiokou F, Wondji CS. 2020. First detection of F1534C knockdown resistance mutation in Aedes aegypti (Diptera: Culicidae) from Cameroon. Infect Dis Poverty 9. DOI: 10.1186/s40249-020-00769-1.
Zheng X, Zheng Z, Wu S, Wei Y, Luo L, Zhong D, Zhou G. 2021. Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China. Parasit Vectors 15:1–11. DOI: 10.1186/s13071-022-05241-7.

Most read articles by the same author(s)