Phytotelmata accounts for Aedes breeding places in Mantup Sub-district, Lamongan District, Indonesia

##plugins.themes.bootstrap3.article.main##

SHIFA FAUZIYAH
SAUDI FITRI SUSANTI
HARIYONO
VERA FAZIRRAH
ANIK EKO NOVITASARI
NUR FADHILAH
TEGUH HARI SUCIPTO
SIN WAR NAW

Abstract

Abstract. Fauziyah S, Susanti SF, Hariyono H, Fazirrah V, Novitasari AE, Fadhilah N, Sucipto TH, Naw SW. 2023. Phytotelmata accounts for Aedes breeding places in Mantup Sub-district, Lamongan District, Indonesia. Biodiversitas 24: 4820-4828. Dengue infection still remains a public health problem in Indonesia, which is classified as a tropical country. Some environmental factors that contribute to the transmission of dengue infection are human migration, human activity, food supply, and climate change. The other type of breeding place is natural breeding habitats, called phytotelmata. This study aims to investigate the diversity of Aedes species in phytotelmata from Mantup Sub-district, Lamongan, East Java, Indonesia. The analytical observational study was conducted with a purposive sampling design. Mosquito larvae collection was carried out from February to March 2023 in Mantup Sub-district, an endemic region of dengue infection in Lamongan. Immature mosquitoes were reared in the laboratory till they merged into adult mosquitoes. This study found four groups of phytotelmata: leaf axils, bamboo joints, fallen leaves, and coconut shells. Leaf axils were the predominant type of phytotelmata (86.67%). Meanwhile, the lowest percentage was coconut shells and fallen leaves (3.33%). A total of 56 mosquito larvae consisting of 12 male Aedes aegypti, 21 female Ae. aegypti, 12 male Aedes albopictus, and 11 female Ae. albopictus were collected from 30 observation points. Eleven families of phytotelmata were found in this study. The predominant family was Araceae (33.3%), while the lowest were Agavaceae, Commelinaceae, Marantaceae, and Liliaceae (3.33%). Phytotelmata accounts for mosquito breeding places, which should be noticed and considered in dengue vector control programs.

##plugins.themes.bootstrap3.article.details##

References
Albicócco, A. P., Carbajo, A. E., & Vezzani, D. (2011). Mosquito community structure in phytotelmata from a South American temperate wetland. Journal of Vector Ecology, 36(2), 437–446. https://doi.org/10.1111/j.1948-7134.2011.00185.x
Bartlett-Healy, K., Unlu, I., Obenauer, P., Hughes, T., Healy, S., Crepeau, T., Farajollahi, A., Kesavaraju, B., Fonseca, D., Schoeler, G., Gaugler, R., & Strickman, D. (2012). Larval mosquito habitat utilization and community dynamics of aedes albopictus and aedes japonicus (Diptera: Culicidae). Journal of Medical Entomology, 49(4), 813–824. https://doi.org/10.1603/ME11031
David, M. R., Dantas, E. S., Maciel-de-Freitas, R., Codeço, C. T., Prast, A. E., & Lourenço-de-Oliveira, R. (2021). Influence of Larval Habitat Environmental Characteristics on Culicidae Immature Abundance and Body Size of Adult Aedes aegypti. Frontiers in Ecology and Evolution, 9(February), 1–12. https://doi.org/10.3389/fevo.2021.626757
Delatte, H., Toty, C., Boyer, S., Bouetard, A., Bastien, F., & Fontenille, D. (2013). Evidence of Habitat Structuring Aedes albopictus Populations in Réunion Island. PLoS Neglected Tropical Diseases, 7(3). https://doi.org/10.1371/journal.pntd.0002111
European Centre for Disease Prevention and Control. (2021). Reverse identification key for mosquito species. European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/publications-data/reverse-identification-key-mosquito-species
Fauziyah, S., & Pranoto, A. (2020). Physicochemical Characters of Mosquitoes Natural Breeding Habitats?: First Record in High Dengue Hemorrhagic Fever Cases Area , East Java , Indonesia. Journal of Tropical Biodiversity and Biotechnology, 05(02), 100–107. https://doi.org/10.22146/jtbb.53714
Gopalakrishnan, R., Das, M., Baruah, I., Veer, V., & Dutta, P. (2013). Physicochemical characteristics of habitats in relation to the density of container-breeding mosquitoes in Asom, India. Journal of Vector Borne Diseases, 50(3), 215–219. https://doi.org/10.5958/0974-4576.2022.00146.3
Gutiérrez, E. H. J., Walker, K. R., Ernst, K. C., Riehle, M. A., & Davidowitz, G. (2020). Size as a proxy for survival in Aedes aegypti (Diptera: Culicidae) mosquitoes. Journal of Medical Entomology, 57(4), 1228–1238. https://doi.org/10.1093/jme/tjaa055
Harrington, L. C., Ponlawat, A., Edman, J. D., Scott, T. W., & Vermeylen, F. (2008). Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand. Vector-Borne and Zoonotic Diseases, 8(3), 415–423. https://doi.org/10.1089/vbz.2007.0203
Ikhsan, M., Hadi, U. K., & Soviana, S. (2020). Diversity and distribution bromeliads plants as breeding habitat for mosquito larvae (Diptera: Culicidae) in Bogor, Indonesia. Biodiversitas, 21(8), 3494–3498. https://doi.org/10.13057/biodiv/d210810
Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A. Q. N., Shearer, F. M., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I. R., Teng, H. J., Brady, O. J., Messina, J. P., Pigott, D. M., Scott, T. W., Smith, D. L., … Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. ELife, 4(JUNE2015), 1–18. https://doi.org/10.7554/eLife.08347
Lamongan, B. (2022). Profil Kabupaten Lamongan. Bappeda Lamongan.
Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., Zhou, Y., Yao, L., Yan, G., & Chen, X. G. (2014). Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship. PLoS Neglected Tropical Diseases, 8(11). https://doi.org/10.1371/journal.pntd.0003301
Louton, J., Gelhaus, J., & Bouchard, R. (1996). The Aquatic Macrofauna of Water-Filled Bamboo (Poaceae: Bambusoideae: Guadua) Internodes in a Peruvian Lowland Tropical Forest. Biotropica, 28(2), 228. https://doi.org/10.2307/2389077
Maciel-de-Freitas, R., Marques, W. A., Peres, R. C., Cunha, S. P., & De Oliveira, R. L. (2007). Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons. Memorias Do Instituto Oswaldo Cruz, 102(4), 489–496. https://doi.org/10.1590/S0074-02762007005000056
Mbanzulu, K. M., Mboera, L. E. G., Wumba, R., Engbu, D., Bojabwa, M. M., Zanga, J., Mitashi, P. M., Misinzo, G., & Kimera, S. I. (2022). Physicochemical Characteristics of Aedes Mosquito Breeding Habitats in Suburban and Urban Areas of Kinshasa, Democratic Republic of the Congo. Frontiers in Tropical Diseases, 2(January), 1–9. https://doi.org/10.3389/fitd.2021.789273
Mocellin, M. G., Simoes, T. C., Nascimenti, T. F. S. do, Teixeira, M. L. F., Lounibos, L. P., & Oliveira, R. L. de. (2009). Bromeliad-inhibiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vestors of Aedes aegypti and Aedes albopictus? Mem Inst Oswaldo Cruz, 104(8), 1171–1176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
O’Meara, G. F., Cutwa, M. M., & Jr, L. F. E. (2003). Bromeliad-inhabiting mosquitoes in south Florida: native and exotic plants differ in species composition. J Vector Ecol, 28(1), 37–46.
Ofori, D. A., Anjarwalla, P., Mwaura, L., Jamnadass, R., Stevenson, P. C., Smith, P., Koch, W., Kukula-Koch, W., Marzec, Z., Kasperek, E., Wyszogrodzka-Koma, L., Szwerc, W., Asakawa, Y., Moradi, S., Barati, A., Khayyat, S. A., Roselin, L. S., Jaafar, F. M., Osman, C. P., … Slaton, N. (2020). BLINDNESS AND VISUAL IMPAIRMENT PROFILE OF RAPID ASSESSMENT OF AVOIDABLE BLINDNESS IN INDONESIA. Molecules, 2(1), 1–12. http://clik.dva.gov.au/rehabilitation-library/1-introduction-rehabilitation%0Ahttp://www.scirp.org/journal/doi.aspx?DOI=10.4236/as.2017.81005%0Ahttp://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/as.2012.34066%0Ahttp://dx.doi.org/10.1016/j.pbi.201
Reiskind, M. H., & Zarrabi, A. A. (2012). Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 49(1), 71–76. https://doi.org/10.1603/ME10270
Schrama, M., Hunting, E. R., Beechler, B. R., Guarido, M. M., Govender, D., Nijland, W., van ‘t Zelfde, M., Venter, M., van Bodegom, P. M., & Gorsich, E. E. (2020). Human practices promote presence and abundance of disease-transmitting mosquito species. Scientific Reports, 10(1), 1–6. https://doi.org/10.1038/s41598-020-69858-3
Walker, E. D., Lawson, D. L., Merritt, R. W., Morgan, W. T., & Klug, M. J. (1991). Nutrient dynamics, bacterial populations, and mosquito productivity in tree hole ecosystems and microcosms. Ecology, 72(5), 1529–1546. https://doi.org/10.2307/1940953
Winchester, J. C. (2011). Aedes Mosquitoes in Hawaii. University of Hawai Press.
World Health Organization. (2020). Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

Most read articles by the same author(s)