Detection of multidrug-resistant (MDR) Staphylococcus aureus and coagulase-negative staphylococci (CoNS) in cow milk and hands of farmers in East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

ASWIN RAFIF KHAIRULLAH
https://orcid.org/0000-0001-9421-9342
SHENDY CANADYA KURNIAWAN
https://orcid.org/0000-0003-0470-3363
SRI AGUS SUDJARWO
https://orcid.org/0000-0002-7998-7500
MUSTOFA HELMI EFFENDI
https://orcid.org/0000-0001-9727-411X
DANIAH ASHRI AFNANI
https://orcid.org/0000-0003-0719-6061
OTTO SAHAT MARTUA SILAEN
https://orcid.org/0000-0002-5170-6797
GIOVANNI DWI SYAHNI PUTRA
https://orcid.org/0000-0002-6878-5137
KATTY HENDRIANA PRISCILIA RIWU
https://orcid.org/0000-0003-0395-2296
AGUS WIDODO
https://orcid.org/0000-0003-3255-6188
SANCAKA CHASYER RAMANDINIANTO
https://orcid.org/0000-0002-4940-4917

Abstract

Abstract. Khairullah AR, Kurniawan SC, Sudjarwo SA, Effendi MH, Afnani DA, Silaen OSM, Putra GDS, Riwu KHP, Widodo A, Ramandinianto SC. 2023. Detection of multidrug-resistant  Staphylococcus aureus and coagulase-negative staphylococci in cow milk and hands of farmers in East Java, Indonesia. Biodiversitas 24: 658-664. Cow milk is a nutrient-dense food containing various nutrients, i.e., carbohydrates, fat, and protein. However, it can potentially spread several pathogenic bacteria, such as staphylococci. Staphylococci cause public health problems. Staphylococcal strains were divided into two groups based on coagulase characteristics, namely coagulase-positive and coagulase-negative staphylococci (CoNS). Coagulase-positive was represented by Staphylococcus aureus. S. aureus and CoNS can become resistant to several antibiotics, known as multidrug resistance (MDR) bacteria. S. aureus and CoNS bacteria are known as causal agents in human infections. This study aims to identify the presence of multidrug resistance S. aureus and CoNS bacteria in several dairy farms in East Java, Indonesia. We collected 332 milk and 125 swab samples from the hand of farmers from several dairy farms in Probolinggo, Tulungagung, and Blitar of East Java, Indonesia. The collected S. aureus and CoNS were tested for antibiotic susceptibility using the disc diffusion method. The antibiotic used were cefoxitin, erythromycin, gentamicin, tetracycline, and oxacillin. The results of isolation and identification based on morphological and biochemical characteristics showed that out of 457 samples, 291 samples (63.68%) were positive for S. aureus, and 166 samples (36.32%) were positive for CoNs. There were 15 S. aureus isolates (5.15%) and 7 CoNS isolates (4.22%) confirmed as MDR; therefore, it is confirmed that S. aureus and CoNS resistance to various drugs was very high in the province of East Java. Intensive livestock systems, high livestock densities, and excessive use of antibiotics in modern dairy systems may predispose the developing growth of MDR S. aureus and CoNS infections. In conclusion, the results of this study indicate the presence of very high multidrug resistant S. aureus and CoNS in the East Java provinces. MDR bacteria can be prevented from spreading by improving biosecurity, hygiene in the milking process, and regular health care for animals and dairy workers.

##plugins.themes.bootstrap3.article.details##

References
Abebe E, Gugsa G, Ahmed M. 2020. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J Trop Med 2020: 4674235. DOI: 10.1155/2020/4674235.
Akindolire MA, Babalola OO, Ateba CN. 2015. Detection of Antibiotic Resistant Staphylococcus aureus from Milk: A Public Health Implication. Int J Environ Res Public Health 12 (9): 10254-10275. DOI: 10.3390/ijerph120910254.
Ansharieta R, Effendi MH, Plumeriastuti H. 2021. Genetic Identification of Shiga Toxin Encoding Gene from Cases of Multidrug Resistance (MDR) Escherichia coli Isolated from Raw Milk. Trop Anim Sci J 44 (1): 10-15. DOI: 10.5398/tasj.2021.44.1.10.
Argudín MÁ, Mendoza MC, Rodicio MR. 2010. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel) 2 (7): 1751-1773. DOI: 10.3390/toxins2071751.
Asiimwe BB, Baldan R, Trovato A, Cirillo DM. 2017. Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infect Dis 17 (1): 422. DOI: 10.1186/s12879-017-2524-4.
Bintsis T. 2017. Foodborne pathogens. AIMS Microbiol 3 (3): 529-563. DOI: 10.3934/microbiol.2017.3.529.
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, Montenegro MCBSM, Rodríguez-Díaz JM. 2022. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 11: 91. DOI: 10.12688/f1000research.108779.1.
Cheng WN, Han SG. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Australas J Anim Sci 33 (11): 1699-1713. DOI: 10.5713/ajas.20.0156.
Decline V, Effendi MH, Rahmaniar RP, Yanestria SM, Harijani N. 2020. Profile of antibiotic-resistant and presence of methicillin-resistant Staphylococcus aureus from nasal swab of dogs from several animal clinics in Surabaya, Indonesia. Int J One Health 6 (1): 90-94. DOI: 10.14202/ijoh.2020.90-94.
Deutsch DR, Utter B, Verratti KJ, Sichtig H, Tallon LJ, Fischetti VA. 2018. Extra-Chromosomal DNA Sequencing Reveals Episomal Prophages Capable of Impacting Virulence Factor Expression in Staphylococcus aureus. Front Microbiol 9: 1406. DOI: 10.3389/fmicb.2018.01406.
Economou V, Gousia P. 2015. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist 8: 49-61. DOI: 10.2147/IDR.S55778.
El-Jakee JK, Aref NE, Gomaa A, El-Hariri MD, Galal HM, Omar SA, Samir A. 2013. Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard. Int J Vet Sci Med 1 (2): 74-78. DOI: 10.1016/j.ijvsm.2013.05.006.
França A, Gaio V, Lopes N, Melo LDR. 2021. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 10 (2): 170. DOI: 10.3390/pathogens10020170.
Garcia SN, Osburn BI, Cullor JS. 2019. A one health perspective on dairy production and dairy food safety. One Health 7: 100086. DOI: 10.1016/j.onehlt.2019.100086.
Gebremedhin EZ, Ararso AB, Borana BM, Kelbesa KA, Tadese ND, Marami LM, Sarba EJ. 2022. Isolation and Identification of Staphylococcus aureus from Milk and Milk Products, Associated Factors for Contamination, and Their Antibiogram in Holeta, Central Ethiopia. Vet Med Int 2022: 6544705. DOI: 10.1155/2022/6544705.
Górska-Warsewicz H, Rejman K, Laskowski W, Czeczotko M. 2019. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients 11 (8): 1771. DOI: 10.3390/nu11081771.
Grispoldi L, Popescu PA, Karama M, Gullo V, Poerio G, Borgogni E, Torlai P, Chianese G, Fermani AG, Sechi P, Cenci-Goga B. 2019. Study on the Growth and Enterotoxin Production by Staphylococcus aureus in Canned Meat before Retorting. Toxins (Basel) 11 (5): 291. DOI: 10.3390/toxins11050291.
Heilmann C, Ziebuhr W, Becker K. 2019. Are coagulase-negative staphylococci virulent? Clin Microbiol Infect 25 (9): 1071-1080. DOI: 10.1016/j.cmi.2018.11.012.
Je?ak K, Kozajda A. 2022. Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine-review. Environ Sci Pollut Res Int 29 (7): 9533-9559. DOI: 10.1007/s11356-021-17773-z.
Johler S, Weder D, Bridy C, Huguenin MC, Robert L, Hummerjohann J, Stephan R. 2015. Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. J Dairy Sci 98 (5): 2944-2948. DOI: 10.3168/jds.2014-9123.
John JF, Harvin AM. 2007. History and evolution of antibiotic resistance in coagulase-negative staphylococci: Susceptibility profiles of new anti-staphylococcal agents. Ther Clin Risk Manag 3 (6): 1143-1152.
Kalangi LS, Syaukat Y, Kuntjoro SU, Priyanti A. 2014. Technical Efficiency of Beef Cattle Breeding Business in East Java Province. J Anim Sci Technol 37 (2): 136-142. DOI: 10.5398/medpet.2014.37.2.136.
Khairullah AR, Raharjo D, Rahmahani J, Suwarno, Tyasningsih W, Harijani N. 2019. Antibiotics resistant at Staphylococcus aureus and Streptococcus sp isolated from bovine mastitis in Karangploso, East Java, Indonesia. Indian J Forensic Med Toxicol 13 (4): 439-444. DOI: 10.5958/0973-9130.2019.00329.3.
Khairullah AR, Ramandinianto SC, Effendi MH. 2020b. A Review of Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) on Bovine Mastitis. Syst Rev Pharm 11 (7): 172-183. DOI: 10.31838/srp.2020.7.28.
Khairullah AR, Rehman S, Sudjarwo SA, Effendi MH, Ramandininto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. 2022b. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000 Res 11: 722. DOI: 10.12688/f1000research.122225.1.
Khairullah AR, Sudjarwo SA, Effendi MH, Harijani N, Tyasningsih W, Rahmahani J, Permatasari DA, Ramandinianto SC, Widodo A, Riwu KHP. 2020a. A Review of Methicillin-Resistant Staphylococcus aureus (MRSA) on Milk and Milk Products: Public Health Importance. Syst Rev Pharm 11 (8): 59-69. DOI: 10.31838/srp.2020.8.9.
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandininto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA, Rehman S. 2022a. Profile of Multidrug Resistance and Methicillin-Resistant Staphylococcus aureus (MRSA) on dairy cows and risk factors from farmer. Biodiversitas 23 (6): 2853-2858. DOI: 10.13057/biodiv/d230610.
Khasanah H, Setyawan HB, Yulianto R, Widianingrum DC. 2021. Subclinical mastitis: Prevalence and risk factors in dairy cows in East Java, Indonesia. Vet World. 14 (8): 2102-2108. DOI: 10.14202/vetworld.2021.2102-2108.
Kou X, Cai H, Huang S, Ni Y, Luo B, Qian H, Ji H, Wang X. 2021. Prevalence and Characteristics of Staphylococcus aureus Isolated From Retail Raw Milk in Northern Xinjiang, China. Front Microbiol 12: 705947. DOI: 10.3389/fmicb.2021.705947.
Kümmel J, Stessl B, Gonano M, Walcher G, Bereuter O, Fricker M, Grunert T, Wagner M, Ehling-Schulz M. 2016. Staphylococcus aureus Entrance into the Dairy Chain: Tracking S. aureus from Dairy Cow to Cheese. Front Microbiol 7: 1603. DOI: 10.3389/fmicb.2016.01603.
Langley G, Besser J, Iwamoto M, Lessa FC, Cronquist A, Skoff TH, Chaves S, Boxrud D, Pinner RW, Harrison LH. 2015. Effect of Culture-Independent Diagnostic Tests on Future Emerging Infections Program Surveillance. Emerg Infect Dis 21 (9): 1582-1588. DOI: 10.3201/eid2109.150570.
Larsson DGJ, Flach CF. 2022. Antibiotic resistance in the environment. Nat Rev Microbiol 20: 257-269. DOI: 10.1038/s41579-021-00649-x.
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. 2018. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 23 (4): 795. DOI: 10.3390/molecules23040795.
Michalik M, Samet A, Podbielska-Kubera A, Savini V, Mi?dzobrodzki J, Kosecka-Strojek M. 2020. Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: a review. Ann Clin Microbiol Antimicrob 19 (1): 26. DOI: 10.1186/s12941-020-00367-x.
Msalya G. 2017. Contamination Levels and Identification of Bacteria in Milk Sampled from Three Regions of Tanzania: Evidence from Literature and Laboratory Analyses. Vet Med Int 2017: 9096149. DOI: 10.1155/2017/9096149.
Munita JM, Arias CA. 2016. Mechanisms of Antibiotic Resistance. Microbiol Spectr 4 (2): 10.1128/microbiolspec.VMBF-0016-2015. DOI: 10.1128/microbiolspec.VMBF-0016-2015.
Osman K, Badr J, Al-Maary KS, Moussa IMI, Hessain AM, Girah ZMSA, Abo-shama UH, Orabi A, Saad A. 2016. Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers. Front Microbiol 7: 1846. DOI: 10.3389/fmicb.2016.01846.
Pandit PS, Williams DR, Rossitto P, Adaska JM, Pereira R, Lehenbauer TW, Byrne BA, Li X, Atwill ER, Aly SS. 2021. Dairy management practices associated with multi-drug resistant fecal commensals and Salmonella in cull cows: a machine learning approach. PeerJ 9: e11732. DOI: 10.7717/peerj.11732.
Paradis ME, Bouchard E, Scholl DT, Miglior F, Roy JP. 2010. Effect of nonclinical Staphylococcus aureus or coagulase-negative staphylococci intramammary infection during the first month of lactation on somatic cell count and milk yield in heifers. J Dairy Sci 93 (7): 2989-2997. DOI: 10.3168/jds.2009-2886.
Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 31 (4): e00088-17. DOI: 10.1128/CMR.00088-17.
Petróczki FM, Pásztor Á, Sz?cs KD, Pál K, Kardos G, Albert E, Horváth B, Ungvári E, Béri B, Peles F. 2021. Occurrence and Characteristics of Staphylococcus aureus in a Hungarian Dairy Farm during a Control Program. Pathogens. 10 (2): 104. DOI: 10.3390/pathogens10020104.
Phophi L, Petzer IM, Qekwana DN. 2019. Antimicrobial resistance patterns and biofilm formation of coagulase-negative Staphylococcus species isolated from subclinical mastitis cow milk samples submitted to the Onderstepoort Milk Laboratory. BMC Vet Res 15 (1): 420. DOI: 10.1186/s12917-019-2175-3.
Rahmaniar RP, Yunita MN, Effendi MH, Yanestria SM. 2020. Encoding gene for methicillin-resistant Staphylococcus aureus (MRSA) isolated from nasal swab of dogs. Indian Vet J 97 (2): 37-40.
Ramandinianto SC, Khairullah AR, Effendi MH. 2020a. MecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms in East Java, Indonesia. Biodiversitas 21 (8): 3562-3568. DOI: 10.13057/biodiv/d210819.
Ramandinianto SC, Khairullah AR, Effendi MH, Hestiana EP. 2020b. Profile of Multidrug Resistance (MDR) and Methicillin Resistant Staphylococcus aureus (MRSA) on Dairy Farms in East Java Province, Indonesia. Indian J Forensic Med Toxicol 14 (4): 3439-3445. DOI: 10.37506/ijfmt.v14i4.12157.
Ramandinianto SC, Khairullah AR, Effendi MH, Kurniawan F. 2021. Detection on methicillin resistant Staphylococcus aureus (MRSA) and methicillin resistant coagulase negative staphylococci (MR-CNS) from several dairy farms in east java, Indonesia. Interciencia 46 (6): 65-77.
Raspanti CG, Bonetto CC, Vissio C, Pellegrino MS, Reinoso EB, Dieser SA, Bogni CI, Larriestra AJ, Odierno LM. 2016. Prevalence and antibiotic susceptibility of coagulase-negative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina. Rev Argent Microbiol 48 (1): 50-56. DOI: 10.1016/j.ram.2015.12.001.
Regasa S, Mengistu S, Abraha A. 2019. Milk Safety Assessment, Isolation, and Antimicrobial Susceptibility Profile of Staphylococcus aureus in Selected Dairy Farms of Mukaturi and Sululta Town, Oromia Region, Ethiopia. Vet Med Int 2019: 3063185. DOI: 10.1155/2019/3063185.
Robles I, Kelton DF, Barkema HW, Keefe GP, Roy JP, von Keyserlingk MAG, DeVries TJ. 2020. Bacterial concentrations in bedding and their association with dairy cow hygiene and milk quality. Animal 14 (5): 1052-1066. DOI: 10.1017/S1751731119002787.
Rossi CC, Pereira MF, Giambiagi-deMarval M. 2020. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 43 (1 suppl 2): e20190065. DOI: 10.1590/1678-4685-GMB-2019-0065.
Suwito W, Nugroho WS, Wahyuni AETH, Sumiarto B. 2021. Antimicrobial resistance in coagulase-negative staphylococci isolated from subclinical mastitis in Ettawa Crossbred goat (PE) in Yogyakarta, Indonesia. Biodiversitas 22 (6): 3418-3422. DOI: 10.13057/biodiv/d220650.
Taponen S, Liski E, Heikkilä AM, Pyörälä S. 2017. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J Dairy Sci 100 (1): 493-503. DOI: 10.3168/jds.2016-11465.
Terreni M, Taccani M, Pregnolato M. 2021. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 26 (9): 2671. DOI: 10.3390/molecules26092671.
Verdier-Metz I, Delbès C, Bouchon M, Pradel P, Theil S, Rifa E, Corbin A, Chassard C. 2022. Influence of Post-Milking Treatment on Microbial Diversity on the Cow Teat Skin and in Milk. Dairy 3 (2): 262-276. DOI: 10.3390/dairy3020021.
Vogwill T, MacLean RC. 2015. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl 8 (3): 284-295. DOI: 10.1111/eva.12202.
Widodo A, Lamid M, Effendi MH, Khairullah AR, Riwu KHP, Yustinasari LR, Kurniawan SC, Ansori ANM, Silaen OSM, Dameanti FNAEP. 2022. Antibiotic sensitivity profile of multidrug-resistant (MDR) Escherichia coli isolated from dairy cow's milk in Probolinggo, Indonesia. Biodiversitas 23 (10): 4971-4976. DOI: 10.13057/biodiv/d231002.
Yanuartono, Nururrozi A, Indarjulianto S, Purnamaningsih H, Ramandani D. 2020. The Benefits of Teat Dipping as Prevention of Mastitis. J Livest Sci Prod 4 (1): 231-249. DOI: 10.31002/jalspro.v4i1.2796.
Zeaki N, Johler S, Skandamis PN, Schelin J. 2019. The Role of Regulatory Mechanisms and Environmental Parameters in Staphylococcal Food Poisoning and Resulting Challenges to Risk Assessment. Front. Microbiol 10: 1307. DOI: 10.3389/fmicb.2019.01307.
Zigo F, Farkašová Z, Výrostková J, Regecová I, Ondrašovi?ová S, Vargová M, Sasáková N, Pecka-Kielb E, Bursová Š, Kiss DS. 2022. Dairy Cows' Udder Pathogens and Occurrence of Virulence Factors in Staphylococci. Animals (Basel) 12 (4): 470. DOI: 10.3390/ani12040470.

Most read articles by the same author(s)

1 2 3 4 > >>