Predicting the current potential geographical distribution of Baccaurea (B. lanceolata and B. motleyana) in South Kalimantan, Indonesia

##plugins.themes.bootstrap3.article.main##

GUNAWAN
KHOERUL ANWAR
ABDUL GAFUR
RAUDATUL HILALIYAH
AZMIL AQILATUL WARO
NUR HIKMAH
SAKINAH
MUHAMMAD ERWANSYAH
DIAN SUSILAWATI
RATNA DWI LESTARI
DINDA TRIANA

Abstract

Abstract. Gunawan, Anwar K, Gafur A, Hilaliyah R, Waro AA, Hikmah N, Sakinah, Erwansyah M, Susilawati D, Lestari RD, Triana D. 2023. Predicting the current potential geographical distribution of Baccaurea (B. lanceolata and B. motleyana) in South Kalimantan, Indonesia. Biodiversitas 24: 930-939. Baccaurea lanceolata and B. motleyana are underutilized species of Kalimantan fruit tree but are a potential source of food and medicine. However, little is known about the occurrences and potential geographical distribution of B. lanceolata and B. motleyana. This study aimed to predict the potential geographical distribution of B. lanceolata and B. motleyana using MaxEnt, and understand the key factors which influenced their distribution. In addition to 19 bioclimatic factors, occurrence data for 57 B. lanceolata and 87 B. motleyana were gathered from field surveys. Solar radiation, altitude, and slope were then utilized to estimate the distribution of these species. Jackknife test was used to evaluate the importance of the environmental variables for predictive modeling. The Area Under Curve (AUC) values of B. lanceolata and B. motleyana were 0.927 and 0.851, indicating that the model is a good and informative model for species distribution of these species. The models for B. lanceolata suggest that the distribution is mainly influenced by altitude, temperature seasonality, precipitation of the wettest month, and precipitation of the driest quarter. Temperature, annual range, precipitation of the wettest month, precipitation of the coldest quarter, and solar radiation in July were the key environmental factors influencing the distribution of B. motleyana. The potential geographic distribution of B. lanceolata and B. motleyana can be useful information to help the researcher in restoration and conservation planning.

##plugins.themes.bootstrap3.article.details##

References
Abdelaal M, Fois M, Fenu G, Bacchetta G. 2019. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép in Egypt. Ecol Inform 50: 68–75. DOI: 10.1016/j.ecoinf.2019.01.003
Araujo MB, Pearson RG, Thuiller W. 2005. Validation of species-climate impact models under climate change. Glob Change Biol. 11: 1504-1513.
Austin MP. 2002. Spacial prediction of spesies distribution: an interface between ecological theory and statistical modeling. Ecol Modell 157(1): 101-118
Bakar MFA, Ahmad NE, Karim FA, Saib S. 2014. Phytochemicals and antioxidative properties of Borneo indigenous Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) fruits. Antioxidants 3: 516–525. DOI: 10.3390/antiox3030516
Belguidoum A, Lograda T, Ramdani M. 2021. Diversity and distribution of epiphytic lichens on Cedrus antlantica and Quercus fagineain mount Babor forest, Algeria. Biodiversitas. 22(2): 887-899. Doi: 10.13057/biodiv/d220244.
Budiharta S, Widyatmoko D, Irawati, Wiriadinata H, Rugayah, Partomihardjo T, Ismail, Uji, T, Keim AP, Wilson K. 2011. The processes that threaten Indonesian plants. Oryx 45: 172–179. DOI: 10.1017/S0030605310001092
Da?ci M, Koc A, Comakli B, G?llap MK, Cengiz MM, Erkovan HI. 2010. Importance of annual and seasonal precipitation variations for the sustainable use of rangelands in semiarid regions with high altitude. African Journal of Agricultural Research. 5(16): 2184-2191. Doi: 10.5897/AJAR10.241.
Elith J, Phillips SJ, Hastie T, Dudík M, Chee Y, Yates CJ. 2011. A statistical explanation of maxent for ecologists. Diver Distrib 17(1): 43–57. DOI: 10.1111/j.1472-4642.2010.00725.x
Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Clim 37(12): 4302–4315. DOI: 10.1002/joc.5086.
Fitriansyah SN, Putri YD, Haris M, Ferdiansyah R, Nurhayati R, Sari YP. 2018. Antibacterial Activity of Extracts of Fruits, Leaves, and Barks of Limpasu (Baccaurea lanceolata (Miq.) Müll.Arg.) From South Kalimantan. PHARMACY: Jurnal Farmasi Indonesi. 15: 2. DOI: 10.30595/pharmacy.v15i2.3062
Fourcade Y, Engler JO, Rodder D, Secondi J. 2014. Mapping species distribution with MaxEnt using geographically biased sample of presence data: a performance assesment of method for correcting sampling bias. PlosOne 9(5): e97122. DOI: 10.1371/journal.pone.0097122.
Fyllas NM, Bentley LP, Shenkin A, Asner GP, Atkin OK, Díaz S, Enquist BJ, Farfan-Rios W, Gloor E, Guerrieri R, Huasco WH, Ishida Y, Martin RE, Meir P, Phillips O, Salinas N, Silman M, Weerasinghe LK, Zaragoza-Castells J, Malhi Y (2017) Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol Lett 20(6):730–740. https://doi.org/10.1111/ele.12771
Gebrewahid Y, Abrehe S, Meresa E, Eyasu G, Abay K, Gebreab G, Kidanemariam K, Adissu G, Abreha G, Darcha G. 2020. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate cange in Northern Ethiopia. Ecol Proc 9:6. Doi.org/10.1186/s13717-019-0210-8.
Goyal AK, Mishra T, Sen A. 2014. Antioxidant profiling of Latkan (Baccaurea ramiflora Lour.) wine. Indian J Biotechnol. 12(1):137–139.
Gunawan, Chikmawati T, Sobir, Sulistijorini. 2016. Review: Fitokimia genus Baccaurea spp. Bioeksperimen. 2(2):96–106.
Gunawan, Sulistijorini, Chikmawati T, Sobir. 2021a. Predicting suitable areas for Baccaurea angulata in Kalimantan, Indonesia using Maxent modelling. Biodiversitas 22(5): 2646–2653. Doi: 10.13057/biodiv/d220523
Gunawan, Rizki MI, Anafarida O, Mahmudah N. 2021b. Modeling potential distribution of Baccaurea macrocarpa in South Kalimantan, Indonesia. Biodiversitas 22(8): 3230-3236. Doi: 10.13057/biodiv/d220816.
Harapan TS, Nurainas, Syamsuardi, Taufiq A. 2022. Identifying the potential geographic distribution for Castanopsis argentea and C. tungurrut (Fagaceae) in the Sumatra conservation area network, Indonesia. Biodiversitas. 23(4): 1726-1733. DOI: 10.13057/biodiv/d230402.
Hemp A. 2006. Continuum or zonation ? altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 184: 27-42.
Hijmans RJ, Guarino L, Mathur P. 2012. DIVA-GIS version 7.5 Manual. https://www.diva-gis.org.
Hijmans RJ. 2020. Raster. Gegraphic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package-raster.
Hoveka LN, Bezeng BS, Yessoufou K, Boatwright JS, Van Der Bank M. 2016. Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. S Afr J Bot 102: 33-38. DOI: 10.1016/j.sajb.2015.07.017
IPCC. 2007. Contribution of working groups I, II, III, to the fourth assessment report of the intergovernmental panel on climate change. Climate Change 2007. Synthesis Report. Geneva.
Jackson CR. Robertson MP. 2011. Predicting the potential distribution of endengered cryptic subterranean mammal from few occurrence records. J. Nat. Conserv. 19: 87-94.
Jordan GJ, Dillon RA, Weston PH. 2005. Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. Am J Bot. 92(5):789–796. https://doi.org/10.3732/ajb.92.5.789.
Kalboussi M, Achour H. 2017. Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entrophy (MaxEnt) and geographic information system (GIS). J. For. Res. 29: 233-245.
Kaky E, Nolan V, Alatawi A, Gilbert F. 2020. A comparison between ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with egyptian medicinal plants. Ecol Inform. 60. 101150. Doi: 10.1016/j.ecoinf.2020.101150.
Körner C. 2007. The use of altitude in ecological research. Trends Ecol Evol. 22: 569-574.
Lim TK. 2012. Edible Medicine and Non-Medicine Plants: Volume 4. London (GB): Springer.
Li Q, Lu H, Zhu L, Wu N, Wang J, Lu X. 2011. Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Tong et al. Forest Ecosystems (2021) 8:62 Page 9 of 10 Nyainqentanglha Mountains (central Tibetan plateau) since 8.4 kyr BP. Holocene 21(6):939–950. https://doi.org/10.1177/0959683611400218.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026
Phillips SJ, Anderson RP, Dudik M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of Maxent. Ecography 40: 887–893. DOI: 10.1111/ecog.03049
Pradhan P. 2015. Potential distribution of Monotropa uniflora L. as a surrogate for range of Monotropoideae (Ericaceae) in South Asia. Biodiversitas 16 (2): 109-115. DOI: 10.13057/biodiv/d160201
Pradhan P. 2016. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8 (5): 29-34. DOI: 10.7537/marsrsj080516.05
Pradhan P. 2019. Testing equivalency of interpolation derived bioclimatic variables with actual precipitation: A step towards selecting more realistic explanatory variables for species distribution modelling. Res J Chem Environ 23: 38-41.
Prodhan AHMSU, Mridu FS. 2021. Baccaurea motleyana (Rambai): nutritional, phytochemical, and medicinal overview. Advances in Traditional Medicine. doi.org/10.1007/s13596-021-00555-w
Pr?au C, Isselin-Nondedeu F, Sellier Y, Bertrand R, Grandjean F. 2018. Predicting suitable habitat of four range margin amphibians under climate and land use changes in southwestern France. Reg. Environ. Chang. 19: 27-38.
Romadlon MA, Az Zahra F, Nugroho GD, Pitoyo A. 2021. Pupulation, habitat characteristic, and modelling of endengered orchid, Paphiopedilum javanicum in mount Lawu, Java, Indonesia. Biodiversitas. 22(4): 1996-2004. Doi: 10.13057/biodiv/d220448.
Rugayah, Retnowati A, Windadri FI, Hidayat A. 2004. Pengumpulan Data Taksonomi. Puslit Biologi LIPI. Bogor.
Setyawan AD, Supriatna J, Darnaedi D, Rokhmatuloh, Sutarno, Sugiyarto, et al. 2017. Impact of climate change on potential distribution of xero-epiphytic Selaginellas (Selaginella involvens and S. repanda) in Southeast Asia. Biodiversitas 18(4): 1680-1695. DOI: 10.13057/biodiv/d180449
Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto et al. 2020a. Predicting potential impacts of climate change on the geographical distribution of mountainous selaginellas in Java, Indonesia. Biodiversitas 21(10): 4866-4877. DOI: 10.13057/biodiv/d211053
Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, et al. 2020b. Anticipated climate changes reveal shifting in habitat suitability of high-altitude selaginellas in Java, Indonesia. Biodiversitas 21 (11): 5482-5497. DOI: 10.13057/biodiv/d211157
Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, et al. 2021. Projecting expansion range of Selaginella zollingeriana in the Indonesian archipelago under future climate conditions. Biodiversitas 22 (4): 2088-2103. DOI: 10.13057/biodiv/d220458
Shao M, Wang L, Li B, Li S, Fan J, Li C. 2022. Maxent modeling for identifying the nature reserve of Cistanche deserticola Ma under effect of the host (Haloxylon Bunge) forest and climate changes in Xianjiang, China. Forest. 13:189. https://doi.org/10.3390/f13020189.
Svening JC, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100. 1266-1286. DOI: 10.3732/ajb.1200469.
Ullah MO, Urmi KF, Howlader MDA, Hossain MDK, Ahmed MT, Hamid K. 2012. Hypoglycemic, hypolippidemic and antioxidant effects of leaves methanolic extract of Baccaurea Ramiflora. Int J Pharm Sci. 4(3):266–269.
Usha T, Middha SK, Bhattacharya M, Lokesh P, Goyal AK. 2014. Rosmarinic acid, a new polyphenol from Baccaurea ramiflora Lour. leaf: a probable compound for its anti-inflammatory activity. Antioxidants. 3(4):830–842.
Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using Maxent model under climate change in China. Glob Ecol Conserv. 16: e00477. doi.org/10.1016/j.gecco.2018.e00477.
Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK. 2016. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol Model 342: 1–18. DOI: 10.1016/j.ecolmodel.2016.09.016
Yan H, Feng L, Zhao Y, Feng L, Di W, Zhu C. 2020. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGis and MaxEnt. Global Ecology and Conservation. 21: e00856. doi.org/10.1016/j.gecco.2019.e00856.
Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. 2013. Maxent modeling for predicting the potential distribution of medicinal plant Justicia adhatoda L: in Lesser Himalayan foothills. Ecol Eng 51: 83–87. DOI: 10.1016/j.ecoleng.2012.12.004
Yi YJ, Cheng X, Yang ZF, Zhang SH. 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan. China Ecol Eng 92: 260-269. DOI: 10.1016/j.ecoleng.2016.04.010.
Zamzani, Triadisti N. 2021. Limpasu Pericarpium : An Altenative Source Of Antioxidant From Borneo With Sequential Maceration Method. Jurnal Profesi Medika: Jurnal Kedokteran dan Kesehatan. 15 (1): 60-68. DOI: http://dx.doi.org/10.33533/jpm.v15i1.2820.
Zhang X, Li G, Du S. 2018. Simulating the potential distribution of Elaeagnus angustifolia L based on climatic constraints in China. Ecol Eng 113: 27–34. DOI: 10.1016/j.ecoleng.2018.01.009

Most read articles by the same author(s)