Modeling potential distribution of Baccaurea macrocarpa in South Kalimantan, Indonesia

##plugins.themes.bootstrap3.article.main##

GUNAWAN
MUHAMMAD IKHWAN RIZKI
OLIVIA ANAFARIDA
NURUL MAHMUDAH

Abstract

Abstract. Gunawan, Rizki MI, Anafarida O, Mahmudah N. 2021. Modeling potential distribution of Baccaurea macrocarpa in South Kalimantan, Indonesia. Biodiversitas 22: 3230-3236. Baccaurea macrocarpa is fruit tree that has a potential source of food and medicine. However, little is known about the occurrences and potential distribution of B. macrocarpa mainly in South Kalimantan. This study is the first to predict the distribution of B. macrocarpa in South Kalimantan using maximum entropy (MaxEnt). Modeling included 102 occurrence records with 19 bioclimatic variables, solar radiation, altitude, and slope. Temperature, solar radiation, and precipitation were the key environmental factor influencing the distribution of B. macrocarpa. The district of HS (Hulu Sungai Selatan), HT (Hulu Sungai Tengah), HU (Hulu Sungai Utara), BL (Balangan), and TG (Tabalong) were predicted as highly suitable areas (IHS 0.6-1) for this species. The MaxEnt model performed better than the random method with an Area Under Curve (AUC) value of 0.817, indicating that the model is good and informative model for habitat suitability of B. macrocarpa. The predicted model we presented here can help habitat conservation, biodiversity conservation planning and monitoring, and cultivation in the future for B. macrocarpa.

##plugins.themes.bootstrap3.article.details##

References
Abdelaal M, Fois M, Fenu G, Bacchetta G. 2019. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép in Egypt. Ecol Inform 50: 68–75.
Aguirre-Gutierrez J, Serna-Chavez HM, Villalobos-Arambula AR, Perez de la Rosa JA, Raes N. 2015. Similiar but no equivalent: ecological niche comparison across closely-related mexican white pines. Diver Distrib 21: 245–257.
Bakar MF A, Ahmad NE, Karim FA, Saib S. 2014. Phytochemicals and antioxidative properties of Borneo indigenous Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) fruits. Antioxidants 3: 516–525.
Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer FA. 2011. Has the Earth’s sixth mass extinction already arrived?. Nature 471: 51–7.
Beck J, Böller M, Erhardt A, Schwanghart A. 2014. 2014. Spatial bias in the GBIF database and its e?ect on modeling species geographic distributions. Ecol Inform 19: 10–15.
Budiharta S, Widyatmoko D, Irawati, Wiriadinata H, Rugayah, Partomihardjo T, Ismail, Uji, T, Keim AP, Wilson K. 2011. The processes that threaten Indonesian plants. Oryx 45: 172–179.
Chen L, Huang JG, Alam SA, Zhai LH, Dawson A, Stadt KJ, Comeau PG. 2017. Drought Causes Reduced Growth of Trembling Aspen in Western Canada. Glob Chang Biol. 23: 2887-2902.
Doughty CE, Goulden ML. 2008. Are tropical forest near a high temperature threshold?. J Geophy Res 113: G00B07. doi:10.1029/2007JG000632.
Elith J, Phillips SJ, Hastie T, Dudík M, Chee Y, Yates CJ. 2011. A statistical explanation of maxent for ecologists. Diver Distrib 17(1): 43–57.
Evangelista PH, Kumar S, Stohlgren TJ, Young NE. 2011. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the interior west of the US. For Ecol Manag 262(3): 307–316.
Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Clim 37(12): 4302–4315.
Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G. 2018. Using species distribution models at local scale to guide the search of poorly known species, review: methodological issues and future directions. Ecol Model 385: 124–132.
Fourcade Y, Engler JO, Rodder D, Secondi J. 2014. Mapping species distribution with MaxEnt using geographically biased sample of presence data: a performance assesment of method for correcting sampling bias. PlosOne 9(5): e97122.
Franklin J. 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press. Cambridge. UK.
Gebrewahid Y, Abrehe S, Meresa E, Eyasu G, Abay K, Gebreab G, Kidanemariam K, Adissu G, Abreha G, Darcha G. 2020. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate cange in Northern Ethiopia. Ecol Proc 9:6. Doi.org/10.1186/s13717-019-0210-8.
Gunawan, Sulistijorini, Chikmawati T, Sobir. 2021. Predicting suitable areas for Baccaurea angulata in Kalimantan, Indonesia using Maxent modelling. Biodiversitas 22(5): 2646–2653.
Gurjar GN, Swami S, Meena NK, Lyngdoh EAS. 2017. Effect os solar radiation in crop production. Soil Conservation Society of India. New Delhi.
Haegens R. 2000. Taxonomy, phylogeny, and biogeography of Baccaurea, Distichirhops, and Nothobaccaurea (Euphorbiaceae). Blumea Supplement 12.
Hijmans RJ, Guarino L, Mathur P. 2012. DIVA-GIS version 7.5 Manual. https://www.diva-gis.org.
IPCC. 2007. Contribution of working groups I, II, III, to the fourth assessment report of the intergovernmental panel on climate change. Climate Change 2007. Synthesis Report. Geneva.
Khanum R, Mumtaz AS, Kumar S. 2013. Predicting impacts of climate change on medicinal Asclepiads of Pakistan using Maxent modeling. Acta Oecologica 49: 23–31.
Ma B, Sun J. 2018. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology 18: 10 doi.org/10.1186/s12898-018-0165-0.
Norhayati, Noviany A, Carabelly AN. 2019. Antibacterial Potential Of Kapul Fruit Skin (Baccaurea macrocarpa) ON Streptococcus sanguis. ODONTO Dental Journal 6(2): 118–124.
Pardede A, Wardhani AAK, Frasisca E. 2020. Antileukemic Activity Of Methanol Extract From Stem Of Baccaurea macrocarpa, Syzygium jambos, Bouea macrophylla Griff., and Diospyros discolor Willd. Edu Chemia (Jurnal Kimia dan Pendidikan). 5(2): 111–118.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259.
Phillips SJ, Anderson RP, Dudik M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of Maxent. Ecography 40: 887–893.
Promnikorn K., Jutamanee K., Kraichak E., 2019. MaxEnt model for predicting potential distribution of Vitex glabrata R.Br. in Thailand. Agric Nat Resour 53: 44–48.
Rana SK, Rana HK, Ghimire SK, Shrestha KK, Ranjitkar S. 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J Mount Sci 14(3): 558–570.
Rugayah, Retnowati A, Windadri FI, Hidayat A. 2004. Pengumpulan Data Taksonomi. Puslit Biologi LIPI. Bogor.
Sanchez AC, Osborne PE, Haq N. 2011. Climate change and the African baobab (Adansonia digitata L.): the need for better conservation strategies. Afr J Ecol 49(2): 234–245.
Setyawan AD, supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Pradan P, Budiharta S, Pitoyo A, Suhardono S, Setyono P, Indrawan M. 2020. Predicting potential impacts of climate change on the geographical distribution of mountainous selaginellas in Java, Indonesia. Biodiversitas 21(10): 4866-4877.
Song B, Niu S, Wan S. 2016. Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. J Plant Ecol 9: 531-541.
Shi PJ, Chen ZH, Reddy GVP, Hui C, Huang JG, Xiao M. 2017. Timing of cherry tree blooming: contrasting effects of rising winter low temperatures and early spring temperature. Agric For Meteorol. 240-241. 78-89.
Sweats JA. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.
Vicento-Serrano SM, Begueria S, Lopez-Moreno JL. 2010. A Multiscalar drought Index Sensitive to global warming: the standardized precipitation evapotranspiration index-SPEI. J Clim 23: 1696-1718.
Voon BH, Kueh HS. 1999. The nutritional value of indigenous fruits and vegetables in Sarawak. Asia Pacific Journal of Clinical Nutrition 8: 24–31.
Warren DL, Seifert SN. 2011. Ecological niche modeling in Maxent: The importance of model complexity and the perfomance of model selection criteria. Ecol App 21(2): 335-342.
Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using Maxent model under climate change in China. Glob Ecol Conserv. 16: e00477. doi.org/10.1016/j.gecco.2018.e00477.
Wei J, Kai H, Yunyun L, Jiufeng W. 2020. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Prot 137: 105268.
West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J. 2016. Field validation of an invasive species Maxent model. Ecol inform 36: 126-134.
Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK. 2016. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol Model 342: 1–18.
Xin X, Zhang L, Zhang J, Wu T, Fang Y. 2013. Climate change projections over east Asia with BCC CSM1.1, climate model under RCP scenarios. J Meteorol Soc JPN 91(4): 413–429.
Xu X, Zhang H, Yue J, Xie T, Xu Y, Tian Y. 2018. Predicting shifts in the suiteble climatic distribution of walnut (Juglans regia L.) in China: maximum entropy model paves the way to forest management. Forest 9(103): 1–15.
Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. 2013. Maxent modeling for predicting the potential distribution of medicinal plant Justicia adhatoda L: in Lesser Himalayan foothills. Ecol Eng 51: 83–87.
Yudaputra A, Pujiastuti I, Cropper WP Jr. 2019. Comparing six different species distribution models with several subsets of environmental variables: predicting the potential current distribution of Guettarda Speciosa in Indonesia. Biodiversitas 20: 2321-2328.
Zamzani I, Triadisti N. 2019. Antibacterial activity of extract and fraction of Baccaurea macrocarpa leaf on Escherichia coli and Bacillus cereus. International Summit on Science Technology and Humanity (ISETH2019). Universitas Muhammadiyah Solo. Surakarta. 3-4 December 2019. [Indonesia].
Zhang X, Li G, Du S. 2018. Simulating the potential distribution of Elaeagnus angustifolia L based on climatic constraints in China. Ecol Eng 113: 27–34.

Most read articles by the same author(s)