Detection of multidrug-resistant Staphylococcus aureus isolated from dairies milk in Medowo Village of Kediri District, Indonesia

##plugins.themes.bootstrap3.article.main##

GIOVANNI DWI SYAHNI PUTRA
https://orcid.org/0000-0002-6878-5137
ASWIN RAFIF KHAIRULLAH
https://orcid.org/0000-0001-9421-9342
MUSTOFA HELMI EFFENDI
https://orcid.org/0000-0001-9727-411X
MOCHAMAD LAZUARDI
https://orcid.org/0000-0002-5171-5968
SHENDY CANADYA KURNIAWAN
https://orcid.org/0000-0003-0470-3363
DANIAH ASHRI AFNANI
https://orcid.org/0000-0003-0719-6061
OTTO SAHAT MARTUA SILAEN
https://orcid.org/0000-0002-5170-6797
YUSAC KRISTANTO KHODA WARUWU
https://orcid.org/0000-0001-9091-6191
SAUMI KIREY MILLANNIA
https://orcid.org/0000-0002-9563-7340
AGUS WIDODO
https://orcid.org/0000-0003-3255-6188
SAFIRA RAMADHANI
https://orcid.org/0000-0003-3246-2675
MUHAMMAD THORIQ IHZA FARIZQI
https://orcid.org/0000-0002-1303-1776
KATTY HENDRIANA PRISCILIA RIWU
https://orcid.org/0000-0003-0395-2296

Abstract

Abstract. Putra GDS, Khairullah AR, Effendi MH, Lazuardi M, Kurniawan SC, Afnani DA, Silaen OSM, Waruwu YKK, Millannia SK, Widodo A, Ramadhani S, Farizqi MTI, Riwu KHP. 2023. Detection of multidrug-resistant (MDR) Staphylococcus aureus isolated from dairies milk in Medowo Village of Kediri District, Indonesia. Biodiversitas 24: 423-430. Bacterial resistance has emerged as a major concern in dairy farms in Indonesia due to the pervasive usage of antibiotics. Furthermore, no specific research has been done to explain the prevalence of Staphylococcus aureus in isolated milk from dairy cows in Kediri, particularly in Medowo Village, and their antibiotic resistance. Moreover, to control the emergence of diseases in humans brought on by dairy cow's milk or infections transmitted through milk, additional research on the prevalence and resistance of bacteria in dairy farms in the Kediri district is urgently required. In Medowo, the Village Kandangan of District, Kediri Regency, Indonesia, 100 dairy cow's milk samples were taken from farms in numerous hamlets. The Kirby-Bauer method performed an antibiotic sensitivity test using disk diffusion. The sensitivity test was attached with antibiotic discs on tetracycline, penicillin, gentamicin, erythromycin, and cefoxitin. According to sample evaluation results, S. aureus was detected in 94 (94%) of the 100 isolated milk samples based on morphological culture features, Gram staining, and biochemical assays. According to the profile of antibiotic resistance derived from the findings of the S. aureus antibiotic resistance test, 23 isolates (24.47%) were proven to be multidrug-resistant (MDR) because they were resistant to three to four classes of antibiotics. The use of antibiotics typically rises in response to an increase in the prevalence of disease in cattle, which could lead to higher levels of antibiotic residue in milk and possibly higher levels of bacterial resistance to antibiotics. Therefore, dairy farming requires methods for prudently and correctly employing antibiotics.

##plugins.themes.bootstrap3.article.details##

References
Abadi I. 2019. Agribusiness Development Strategy Farms Dairy Cattle In The District Kediri. Manag Agribus: J Agribus 19 (2): 9-25. DOI: 10.32503/agribisnis.v19i2.648.
Afnani DA, Fatih N, Effendi MH, Tyasningsih W, Kairullah AR, Kurniawan SC, Silaen OSM, Ramandianto SC, Widodo A, Hendriana K, Riwu KHP. 2022. Profile of Multidrug Resistance and Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from cats in Surabaya, Indonesia. Biodiversitas 23 (11): 5703-5709. DOI: 10.13057/biodiv/d231121.
Antanaitis R, Juozaitien? V, Jonike V, Baumgartner W, Paulauskas A. 2021. Milk Lactose as a Biomarker of Subclinical Mastitis in Dairy Cows. Animals 11 (6): 1736. DOI: 10.3390/ani11061736.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6 (2): 71-79. DOI: 10.1016/j.jpha.2015.11.005.
Berhe G, Wasihun AG, Kassaye E, Gebreselasie K. 2020. Milk-borne bacterial health hazards in milk produced for commercial purpose in Tigray, northern Ethiopia. BMC Public Health 20: 894. DOI: 10.1186/s12889-020-09016-6.
Birhanu M, Leta S, Mamo G, Tesfaye S. 2017. Prevalence of bovine subclinical mastitis and isolation of its major causes in Bishoftu Town, Ethiopia. BMC Res Notes 10 (1): 767. DOI: 10.1186/s13104-017-3100-0.
Bonev B, Hooper J, Parisot J. 2008. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother 61 (6): 1295-1301. DOI: 10.1093/jac/dkn090.
Chambers HF, Deleo FR. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7 (9): 629-641. DOI: 10.1038/nrmicro2200.
Cheng WN, Han SG. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Australas J Anim Sci 33 (11): 1699-1713. DOI: 10.5713/ajas.20.0156.
Cobirka M, Tancin V, Slama P. 2020. Epidemiology and Classification of Mastitis. Animals (Basel) 10 (12): 2212. DOI: 10.3390/ani10122212.
Cook MA, Wright GD. 2022. The past, present, and future of antibiotics. Sci Transl Med 14 (657): eabo7793. DOI: 10.1126/scitranslmed.abo7793.
Côté-Gravel J, Malouin F. 2019. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 102 (5): 4727-4740. DOI: 10.3168/jds.2018-15272.
Dallago GM, Wade KM, Cue RI, McClure JT, Lacroix R, Pellerin D, Vasseur E. 2021. Keeping Dairy Cows for Longer: A Critical Literature Review on Dairy Cow Longevity in High Milk-Producing Countries. Animals 11 (3): 808. DOI: 10.3390/ani11030808.
Decline V, Effendi MH, Rahmaniar RP, Yanestria SM, Harijani N. 2020. Profile of antibiotic-resistant and presence of methicillin-resistant Staphylococcus aureus from nasal swab of dogs from several animal clinics in Surabaya, Indonesia. Intl J One Health 6 (1): 90-94. DOI: 10.14202/ijoh.2020.90-94.
Deutsch DR, Utter B, Verratti KJ, Sichtig H, Tallon LJ, Fischetti VA. 2018. Extra-Chromosomal DNA Sequencing Reveals Episomal Prophages Capable of Impacting Virulence Factor Expression in Staphylococcus aureus. Front Microbiol 9: 1406. DOI: 10.3389/fmicb.2018.01406.
Erickson PS, Kalscheur KF. 2020. Nutrition and feeding of dairy cattle. Anim Agric 157-180. DOI: 10.1016/B978-0-12-817052-6.00009-4.
Fanissa F, Effendi MH, Tyasningsih W, Ugbo EN. 2022. Multidrug-resistant Salmonella species from chicken meat sold at Surabaya Traditional Markets, Indonesia. Biodiversitas 23 (6): 2823-2829. DOI: 10.13057/biodiv/d230606.
Fawaid, B. 2020. Cage Sanitation, Hygiene of Dairy Farmer, Physical Quality and Microorganism of Dairy Cattle Milk In Medowo, Kediri, East Java. J Environ Health 12 (1): 69-77. DOI: 10.20473/jkl.v12i1.2020.69-77.
Fejzic N, Begagic M, Šeri?-Hara?i? S, Smajlovic M. 2014. Beta lactam antibiotics residues in cow's milk: comparison of efficacy of three screening tests used in Bosnia and Herzegovina. Bosn J Basic Med Sci 14 (3): 155-159. DOI: 10.17305/bjbms.2014.3.109.
Gebremedhin EZ, Ararso AB, Borana BM, Kelbesa KA, Tadese ND, Marami LM, Sarba EJ. 2022. Isolation and Identification of Staphylococcus aureus from Milk and Milk Products, Associated Factors for Contamination, and Their Antibiogram in Holeta, Central Ethiopia. Vet Med Int 2022: 6544705. DOI: 10.1155/2022/6544705.
Ghimpe?eanu OM, Pogurschi EN, Popa DC, Dragomir N, Dr?gotoiu T, Mihai OD, Petcu CD. 2022. Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods 11 (10): 1430. DOI: 10.3390/foods11101430.
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. 2021. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med 8: 677720. DOI: 10.3389/fmed.2021.677720.
Ismail YS, Yulvizar C, Mazhitov B. 2018. Characterization of lactic acid bacteria from local cow´s milk kefir. IOP Conf Ser: Earth Environ Sci 130: 012019. DOI: 10.1088/1755-1315/130/1/012019.
Kalayu AA, Woldetsadik DA, Woldeamanuel Y, Wang SH, Gebreyes WA, Teferi T. 2020. Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia. BMC Vet Res 16 (1): 20. DOI: 10.1186/s12917-020-2235-8.
Kapoor G, Saigal S, Elongavan A. 2017. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 33 (3): 300-305. DOI: 10.4103/joacp.JOACP_349_15.
Karaman R, Jubeh B, Breijyeh Z. 2020. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules 25 (12): 2888. DOI: 10.3390/molecules25122888.
Kerro Dego O, Pacha PA, Gillespie BE, Pighetti GM. 2020. Experimental Staphylococcus aureus Mastitis Infection Model by Teat Dipping in Bacterial Culture Suspension in Dairy Cows. Animals (Basel) 10 (5): 751. DOI: 10.3390/ani10050751.
Khairullah AR, Raharjo D, Rahmahani J, Suwarno, Tyasningsih W, Harijani N. 2019. Antibiotics resistant at Staphylococcus aureus and Streptococcus sp isolated from bovine mastitis in Karangploso, East Java, Indonesia. Indian J Forensic Med Toxicol 13 (4): 439-444. DOI: 10.5958/0973-9130.2019.00329.3.
Khairullah AR, Ramandinianto SC, Effendi MH. 2020. A Review of Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) on Bovine Mastitis. Syst Rev Pharm 11 (7): 172-183. DOI: 10.31838/srp.2020.7.28.
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandininto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA, Rehman S. 2022. Profile of Multidrug Resistance and Methicillin-Resistant Staphylococcus aureus (MRSA) on dairy cows and risk factors from farmer. Biodiversitas 23 (6): 2853-2858. DOI: 10.13057/biodiv/d230610.
Kimman T, Hoek M, de Jong MCM. 2013. Assessing and controlling health risks from animal husbandry. NJAS - Wagening J Life Sci 66: 7-14. DOI: 10.1016/j.njas.2013.05.003.
Kumari H, Chakraborti T, Singh M, Chakrawarti MK, Mukhopadhyay K. 2020. Prevalence and antibiogram of coagulase negative Staphylococci in bioaerosols from different indoors of a university in India. BMC Microbiol 20: 211. DOI: 10.1186/s12866-020-01875-8.
Lee CR, Cho IH, Jeong BC, Lee SH. 2013. Strategies to minimize antibiotic resistance. Int J Environ Res Public Health 10 (9): 4274-4305. DOI: 10.3390/ijerph10094274.
Liu J, Wang X, Bi C, Mehmood K, Ali F, Qin J, Han Z. 2022. Molecular characterization of multi-drug-resistant Staphylococcus aureus in mastitis bovine milk from a dairy farm in Anhui, China. Front Vet Sci 9: 966533. DOI: 10.3389/fvets.2022.966533.
Lobanovska M, Pilla G. 2017. Penicillin's Discovery and Antibiotic Resistance: Lessons for the Future?. Yale J Biol Med 90 (1): 135-145.
Mancuso G, Midiri A, Gerace E, Biondo C. 2021. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 10 (10): 1310. DOI: 10.3390/pathogens10101310.
Mawardi RH, Sulistyani N, Nurkhasanah, Desyratnaputri R. 2020. Antibacterial activity and tlc-bioautography analysis of the active fractions of Muntingia calabura L. leaves against Staphylococcus aureus. J Pharm Sci Community 17 (2): 69-75. DOI: 10.24071/jpsc.002362.
McMillan EA, Gupta SK, Williams LE, Jové T, Hiott LM, Woodley TA, Barrett JB, Jackson CR, Wasilenko JL, Simmons M, Tillman GE, McClelland M, Frye JG. 2019. Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. Front Microbiol 10: 832. DOI: 10.3389/fmicb.2019.00832.
Mdegela RH, Mwakapeje ER, Rubegwa B, Gebeyehu DT, Niyigena S, Msambichaka V, Nonga HE, Antoine-Moussiaux N, Fasina FO. 2021. Antimicrobial Use, Residues, Resistance and Governance in the Food and Agriculture Sectors, Tanzania. Antibiotics (Basel) 10 (4): 454. DOI: 10.3390/antibiotics10040454.
Mohammed J, Ziwa MH, Hounmanou YMG, Kisanga A, Tuntufye HN. 2018. Molecular Typing and Antimicrobial Susceptibility of Methicillin-Resistant Staphylococcus aureus Isolated from Bovine Milk in Tanzania. Int J Microbiol 2018: 4287431. DOI: 10.1155/2018/4287431.
Nepal G, Bhatta S. 2018. Self-medication with Antibiotics in WHO Southeast Asian Region: A Systematic Review. Cureus 10 (4): e2428. DOI: 10.7759/cureus.2428.
Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 31 (4): e00088-17. DOI: 10.1128/CMR.00088-17.
Rahmaniar RP, Yunita MN, Effendi MH, Yanestria SM. 2020. Encoding gene for methicillin-resistant Staphylococcus aureus (MRSA) isolated from nasal swab of dogs. Indian Vet J 97 (2): 37-40.
Ramandinianto SC, Khairullah AR, Effendi MH. 2020a. MecA gene and methicillin resistant Staphylococcus aureus (MRSA) isolated from dairy farms in East Java, Indonesia. Biodiversitas 21 (8): 3562-3568. DOI: 10.13057/biodiv/d210819.
Ramandinianto SC, Khairullah AR, Effendi MH, Hestiana EP. 2020b. Profile of Multidrug Resistance (MDR) and Methicillin Resistant Staphylococcus aureus (MRSA) on Dairy Farms in East Java Province, Indonesia. Indian J Forensic Med Toxicol 14 (4): 3439-3445. DOI: 10.37506/ijfmt.v14i4.12157.
Ratajczak AE, Zawada A, Rychter AM, Dobrowolska A, Krela-Ka?mierczak I. 2021. Milk and Dairy Products: Good or Bad for Human Bone? Practical Dietary Recommendations for the Prevention and Management of Osteoporosis. Nutrients 13 (4): 1329. DOI: 10.3390/nu13041329.
Regasa S, Mengistu S, Abraha A. 2019. Milk Safety Assessment, Isolation, and Antimicrobial Susceptibility Profile of Staphylococcus aureus in Selected Dairy Farms of Mukaturi and Sululta Town, Oromia Region, Ethiopia. Vet Med Int 2019: 3063185. DOI: 10.1155/2019/3063185.
Rhee C, Kadri SS, Dekker JP, Danner RL, Chen HC, Fram D, Zhang F, Wang R, Klompas M. 2020. Prevalence of Antibiotic-Resistant Pathogens in Culture-Proven Sepsis and Outcomes Associated With Inadequate and Broad-Spectrum Empiric Antibiotic Use. JAMA Netw Open 3 (4): e202899. DOI: 10.1001/jamanetworkopen.2020.2899.
Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8: 76. DOI: 10.1186/s13756-019-0533-3.
Sjarif DR, Yuliarti K, Iskandar WJ. 2019. Daily consumption of growing-up milk is associated with less stunting among Indonesian toddlers. Med J Indones 28 (1): 70-76. DOI: 10.13181/mji.v28i1.2607.
Solikin N, Hartono B, Fanani Z, Ichsan MN. 2018. The Potential of Economicbase of The Livestock Sector in Kediri, East Java. J Dev Res 2 (1): 9-14. DOI: 10.28926/jdr.v2i1.48.
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. 2018. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 9: 2066. DOI: 10.3389/fmicb.2018.02066.
Tamendjari S, Bouzebda FA, Chaib L, Aggad H, Ramdani M, Bouzebda Z. 2021. Antibiotic resistance of Staphylococcus aureus isolated from raw cow and goat milk produced in the Tiaret and Souk Ahras areas of Algeria. Vet World 14 (7): 1929-1934. DOI: 10.14202/vetworld.2021.1929-1934.
Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28 (3): 603-661. DOI: 10.1128/CMR.00134-14.
Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40 (4): 277-283.
Virto M, Santamarina-García G, Amores G, Hernández I. 2022. Antibiotics in Dairy Production: Where Is the Problem?. Dairy 3: 541-564. DOI: 10.3390/dairy3030039.
Widodo A, Lamid M, Effendi MH, Khairullah AR, Riwu KHP, Yustinasari LR, Kurniawan SC, Ansori ANM, Silaen OSM, Dameanti FNAEP. 2022. Antibiotic sensitivity profile of multidrug-resistant (MDR) Escherichia coli isolated from dairy cow's milk in Probolinggo, Indonesia. Biodiversitas 23 (10): 4971-4976. DOI: 10.13057/biodiv/d231002.
Zeaki N, Johler S, Skandamis PN, Schelin J. 2019. The Role of Regulatory Mechanisms and Environmental Parameters in Staphylococcal Food Poisoning and Resulting Challenges to Risk Assessment. Front Microbiol 10: 1307. DOI: 10.3389/fmicb.2019.01307.
Zwanzig M. 2020. The ecology of plasmid-coded antibiotic resistance: a basic framework for experimental research and modeling. Comput Struct Biotechnol J 19: 586-599. DOI: 10.1016/j.csbj.2020.12.027.

Most read articles by the same author(s)

1 2 3 4 > >>