Morpho-physiological and molecular characteristics of bacteria causing stalk rot disease on corn in Gorontalo, Indonesia

##plugins.themes.bootstrap3.article.main##

SURIANI
BAHARUDDIN PATANDJENGI
AMRAN MUIS
MUHAMMAD JUNAID
HISHAR MIRSAM
MUHAMMAD AZRAI

Abstract

Abstract. Suriani, Patandjengi B, Muis A, Junaid M, Mirsam H, Azrai M. 2023. Morpho-physiological and molecular characteristics of bacteria causing stalk rot disease on corn in Gorontalo, Indonesia. Biodiversitas 24: 1749-1758. Stalk rot disease was observed in corn in Gorontalo with typical symptoms, such as soft rot on the stalk, leaf wilting, and plant death. This study aimed to characterize the bacteria causing stalk rot disease in corn. Samples of infected plants were collected and identified morphologically, physiologically, and molecularly. The results showed that nine bacterial isolates were isolated from infected plants. All nine isolates showed positive hypersensitive responses on tobacco leaves. In comparison, only two bacterial isolates (BGO1 and BGO4) were positive on pathogenicity tests on corn. However, the BGO4 isolate caused the highest disease incidence with a faster incubation period. The BGO4 isolate was gram-negative with white-gray colored colonies. Physiological characterization of BGO4 also showed: positive catalase and indole, oxidase negative, fermentative oxidation, caused soft rot on potato, non-fluorescent, and sensitive to erythromycin. In addition, it can grow at 37-40°C and 5% NaCl, producing protease and lecithinase enzymes. The BGO4 also isolates infected rice, corn, sorghum, foxtail millet, celery, and Aloe vera. Morpho-physiology characteristics and diagnostic amplification of DNA by PCR using the Dickeya-specific primers (ADE1/ADE2) showed that the isolate belongs to the genus Dickeya. Further molecular characterization by analysis of the 16S rDNA using universal primer 27F/1497R successfully amplified the DNA band of BGO4 isolate measuring ±1300 bp. Phylogenetic analysis showed that it was in the same group as Dickeya zeae strain MS32 from Taiwan, strain DZ15SB01 (Thailand), and strain HNJF02 (China), with the coefficient of genetic distance ranging from 0.001 to 0.002. This study is the first report of D. zeae infecting corn in Gorontalo.

##plugins.themes.bootstrap3.article.details##

References
Aeny TN, Suharjo R, Ginting C, Hapsoro DWI, Niswati A. 2020. Characterization and host range assessment of Dickeya zeae associated with pineapple soft rot disease in east Lampung, Indonesia. Biodiversitas 21: 587-595. https://doi.org/10.13057/biodiv/d210221 .
Ahamad S, Lal B, Kher, D. 2015. Screening of maize germplasms against stalk rot diseases in the intermediate zone of Jammu Region. Int J Innov Sci Eng Technol 2:1024–1032.
Alic S, Naglic T, Tusek-Znidaric M, Peterka M, Ravnikar M, Dreo T. 2017. Putative new species of the genus Dickeya as major soft rot pathogens in Phalaenopsis orchid production. Plant Pathol 66:1357–1368. https://doi.org/10.1111/ijlh.12426.
Azadmanesh S, Mozafari J, Hasanzadeh N, Moslemkhani C. 2016. In vitro evaluation of potato genotypes for resistance against bacterial soft rot (Pectobacterium carotovorum)- A new tool for studying disease resistance. J Plant Prot Res 57:1–8. https://doi.org/10.1515/jppr-2017-0001
Badan Pusat Statistik. Analisa Jagung Dan Kedelai Di Indonesia 2020 (Hasil Survei Ubinan). BPS Indonesia, Catalog Number: 5303029.
Badan Pusat Statistik Gorontalo. 2020. Perkembangan ekspor dan impor Provinsi Gorontalo Agustus 2020: 1-12.
Boluk G, Arizala D, Dobhal S, Zhang J, Hu J, Alvarez AM, Arif M. 2021. Genomic and phenotypic biology of novel strains of Dickeya zeae isolated from pineapple and taro in Hawaii: Insights Into Genome Plasticity, Pathogenicity, and Virulence Determinants. Front Plant Sci 12:1–26. https://doi.org/10.3389/fpls.2021.663851
Braun P, Nguyen MD, Walter MC, Grass G. 2021. Ultrasensitive detection of Bacillus anthracis by Real-Time PCR targeting a polymorphism in multi-copy 16S rRNA genes and their transcripts. Int J Mol Sci Artic
Czajkowski R, Pérombelon MCM, Jafra S, Lojkowska E, Potrykus M, Van Der Wolf JM, Sledz W. 2015. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: A review. Ann Appl Biol 166:18–38. https://doi.org/10.1111/aab.12166.
Drancourt M, Bollet C, Carlioz A, Martelin R. 2000. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38:3623–3630
Fatmawati, Zulham2019. Analisis margin dan efisiensi saluran pemasaran petani jagung ( Zea mays) di desa Suka Makmur Kabupaten Pohuwato Provinsi Gorontalo. Gorontalo Agric Technol J 2:19–29
Fox GE, Wisotzkey JD, Jurtshuk P. 1992. How close is close?: 16S rRNA sequence identity may not be sufficient to how close is close?guarantee species identity. Inter J of Systematic Bacteriology 42: 166-170. https://doi.org/10.1099/00207713-42-1-166
Goto K, Omura T, Hara Y, Sadaie Y. 2000. Application of the partial 16S rDNA sequence as an index. J Gen Appl Microbiol 8:1–8
Guan Y, Chen W, Wu Y, Hu Y, Wang H, He Z, Zheng H., 2020. First report of corn stalk rot caused by Dickeya zeae on sweet corn in Shanghai, China. J Plant Pathol 102:557–558. https://doi.org/10.1007/s42161-019-00447-8
Harris JK, Kelley ST, Pace NR, Al HET. 2004. New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70:845–849. https://doi.org/10.1128/AEM.70.2.845
Holt, John G, Noel RK, Peter HAS, James TS, Stanley TW. 1994. Bergey’s Manual of Determinative Bacteriology 9th Edition. United States of America: A Waverly Company.
Janda JM, Abbott SL. 2007. Minireview; 16S rRNA gene sequencing for bacterial identification in the Diagnostic Laboratory?: Pluses , Perils , and Pitfalls. J Clin Microbiol 45:2761–2764. https://doi.org/10.1128/JCM.01228-07.
Jayaseelan T, Damodaran R, Ganesan S, Mani P. 2018. Biochemical characterization and 16s rRNA sequencing of different bacteria from textile dye effluents. J Drug Deliv Ther 8:35–40
Jones B, Goodall T, George PBL, Gweon HS, Puissant J, Read DS, Emmett BA., Robinson DA, Jones DL & Griffiths RI. 2021. Beyond taxonomic identification?: Integration of Ecological Responses to a Soil Bacterial 16S rRNA Gene Database. Front Microbiol 12:1–11. https://doi.org/10.3389/fmicb.2021.682886.
Kamau JW. 2020. Phenotypic and molecular characterization of Pectobacterium and Dickeya species associated with blackleg and soft rot of potato in kenya master of science (Molecular Biology & Bioinformatics) Thesis Partial Fulfilment Master Sci Degree Mol Biol Bioinforma Jomo Kenyatta Univ Agric Technol.
Kanzil T, Fatimah, Manampiring A. 2015. Uji resistensi bakteri Bacillus sp yang diisolasi dari plak gigi terhadap merkuri dan eritromisin. J e-Biomedik 3:1–4. https://doi.org/10.35790/ebm.3.1.2015.6610
Kumar A, Hunjan MS, Kaur H, Rawal R, Kumar A, Singh PP. 2017a. A review on bacterial stalk rot disease of maize caused by Dickeya zeae. J Appl Nat Sci 9:1214–1225. https://doi.org/10.31018/jans.v9i2.1348.
Kumar A, Hunjan MS, Kaur H, Dhillon HK, Singh PP. 2017b. Biochemical responses associated with resistance to bacterial stalk rot caused by Dickeya zeae in maize. J Phytopathol 165:822–832. https://doi.org/10.1111/jph.12622
Kumar A, Vigyan K, Jhansi K, Kaur H. 2015. Characterization of Dickeya zeae isolates causing stalk rot of maize based on biochemical assays and antibiotic sensitivity. Indian Phytopath 68:375–379
Lumantouw SF, Kandou FE, Rondonuwu SB, Singkoh MFO. 2014. I Isolasi dan identifikasi bakteri yang toleran terhadap fungisida mankozeb pada lahan pertanian tomat di Desa Tempok, Kecamatan Tompaso, Sulawesi Utara. J Bios Logos 3:. https://doi.org/10.35799/jbl.3.2.2013.4433
Martinez-Cisneros BA, Juarez-Lopez G, Valencia-Torres N, Duran-Peralta E, Mezzalama M. 2014. First report of bacterial stalk rot of maize caused by Dickeya zeae in Mexico. Plant Dis. 98:1267.
Mignard S, Flandrois JP. 2006. 16S rRNA sequencing in routine bacterial identification?: A 30-month experiment. J. of Micro Methods 67: 574-581. https://doi.org/10.1016/j.mimet.2006.05.009
Mikici?ski A, Sobiczewski P, Sulikowska M, e Pu?awska J, Treder J. 2010. Pectolytic bacteria associated with soft rot of calla lily (Zantedeschia spp.) tubers. J Phytopathol 158:201–209. https://doi.org/10.1111/j.1439-0434.2009.01597.x
Mirsam H, Suriani, Rahman AA, Pakki S, Azrai M, Prayitno OD. 2021. Genotype resistance of hybrid corn varieties candidate against major corn diseases. In: IOP Conf. Series: Earth and Environmental Science 911, The 2nd International Conference on Sustainable Cereals and Crops Production Systems in the Tropics (ICFST). IOP Publishing, pp 1–8
Mokrani S, Nabti E. 2021. Rapid screening of phytopathogenic Erwinia sp. of two potato varieties (spunta and desiree) from Algerian agricultural fields. J Hama Dan Penyakit Tumbuh Trop 21:123–133. https://doi.org/10.23960/jhptt.221123-133
Mu’minah, Baharuddin, Subair H, Fahruddin. 2015. Isolation and screening bacterial exopolysaccharide (EPS) from potato rhizosphere in highland and the potential as a producer indole acetic acid (IAA). Procedia Food Sci 3:74–81. https://doi.org/10.1016/j.profoo.2015.01.007
Nepali B, Bhattarai S, Shrestha J. 2018. Identification of Pseudomonas fluorescens using different biochemical tests. Int J Appl Biol 2:27–32. https://doi.org/10.20956/ijab.v2i2.5260
Nonci M, Baharuddin B, Rasyid B, Pirman P. 2016. Seleksi Bakteri methanotrof (pereduksi emisi gas metan di lahan sawah) berdasarkan aktivitas enzim methan monooksigenase. J Ilmu Lingkung 13:87. https://doi.org/10.14710/jil.13.2.87-91
Patel JB. 2001. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis 6 (4): 313-322. https://doi.org/10.1054/modi.2001.29158
Podungge D, Mashudi I, Katili AY. 2019. Analisis roadmap pengembangan industri jagung di Provinsi Gorontalo. Publik (Jurnal Ilmu Adm 8:160–166
Pratama ML, Rosa, Helda Orbani S. 2022. Identification of bacteria causing maize wilt disease in Tanah Laut Regency, South Kalimantan Int J Biosci 20:104–115
Proki? A, Zlatkovi? N, Kuzmanovi? N, Ivanovi? M, Gaši? K. Pavlovi?, Obradovi? A., 2020. Identification and characterization of Dickeya zeae strains associated with maize stalk soft-rot in northern Serbia. Eur J Plant Pathol 157:685–691. https://doi.org/10.1007/s10658-020-02019-4
Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, Gardan L. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species. Int J Syst Evol Microbiol 55:1415–1427. https://doi.org/10.1099/ijs.0.02791-0
Shah D, Khan MS, Aziz S, Aziz, S., Ali H, Pecoraro L. 2022. Isolated from wheat varieties molecular and biochemical characterization , antimicrobial activity , stress tolerance , and plant growth-promoting effect of endophytic bacteria isolated from wheat varieties. Microorganisms. https://doi.org/10.3390/microorganisms10010021
Subedi S, Subedi H, Neupane S. 2016. Status of maize stalk rot complex in Western Belts of Nepal and its integrated management. J Maize Res Dev 2:30–42. https://doi.org/10.3126/jmrd.v2i1.16213
Sudewi S, Ala A, Baharuddin, Farid M. 2020. The Isolation, characterization endophytic bacteria from roots of local rice plant Kamba in Central Sulawesi, Indonesia. Biodiversitas 21:1614–1624. https://doi.org/10.13057/biodiv/d210442.
Thakkar P, Modi HA, Prajapati JB 2015. Isolation, characterization and safety assessment of lactic acid bacterial isolates from fermented food products. Int J Curr Microbiol Appl Sci 4:713–723
Tivani I, Amananti W, Sunardi A. 2019. Uji identifikasi bakteri Esherichia coli pada jamu gendong kunyit asem di Kabupaten Tegal. Parapemikir J Ilm Farm 8:31–35. https://doi.org/10.30591/pjif.v8i1.1297
Zhang J, Arif M, Shen H, Hu J, Sun D, Pu X, Yang Q, Lin B. 2020. Genomic divergence between Dickeya zeae strain EC2 isolated from rice and previously identified strains, suggests a different rice foot rot strain. PLoS One 15:1–22. https://doi.org/10.1371/journal.pone.0240908.

Most read articles by the same author(s)

1 2 > >>