The relationship between vector insect populations, natural enemies, and disease incidence of tungro virus during wet and dry seasons




Abstract. Hutasoit RT, Jihad M, Listihani L, Selangga DGW. 2023. The relationship between vector insect populations, natural enemies, and disease incidence of tungro virus during wet and dry seasons. Biodiversitas 24: 4001-4007. Tungro virus is one of the most prevalent viruses affecting rice plants. The tungro virus is frequently found in rice plantations because its green planthopper vector is always present. This study aimed to determine the relationship between the population density of green planthoppers and its natural enemies with the incidence of tungro disease during the rainy and dry seasons in Lanrang, Sidenreng Rappang, South Sulawesi. The research method employed was field monitoring of the population density of green planthoppers, natural enemies, and the incidence of tungro disease. The presence of the tungro virus was confirmed by the molecular method using RTSV and RTBV-specific primers. The results showed three types of tungro vector insects: Nephotettix virescens, Nephotettix nigropictus, and Recilia dorsalis. Nephotettix virescens was the dominant vector insect, with the highest population in March and August of 101 and 51 individuals, respectively. During the dry season, the high population of the three vector insects in August was followed by a high incidence of tungro disease in September, reaching 29.38%. Symptoms of yellow leaves have been confirmed by molecular methods, which indicated that the infection was caused by RTSV and RTBV, as evidenced by the amplification of DNA bands measuring 787 bp and 1400 bp. Data on the population of vector insects and the incidence of tungro disease indicated the importance of determining the ideal time to plant to avoid the plant's susceptible phase during the peak vector population between March and August. The dominant natural enemies found during the observations included Araneus inustus, Tetragnatha maxillosa, Agriocnemis pygmaea, and Menochilus sexmaculatus. Increasing the population of natural enemies could suppress the population of vector insects.


Anand A, Pinninti M, Tripathi A, Mangrauthia SK, Sanan-Mishra N. 2022. Coordinated action of RTBV and RTSV proteins suppress host RNA silencing machinery. Microorganisms 10: 1-13. DOI: 10.3390/microorganisms10020197.
Banerjee A, Roy S, Tarafdar J. 2012. The large intergenic region of Rice tungro bacilliform virus evolved differentially among geographically distinguished isolates. Virus Genes 44 (2): 312-318. DOI: 10.1007/s11262-011-0680-y.
Blas NT, Addawe JM, David GA. 2016. Mathematical model of transmission of rice tungro disease by Nephotettix virescens. Am Inst Phys 1787: 080015. DOI: 10.1063/1.4968154.
Bunawan H, Dusik L, Bunawan SN, Amin NM. 2014. Rice tungro disease: from identification to disease control. World Appl Sci J 31: 1221-1226. DOI: 10.5829/idosi.wasj.2014.31.06.610.
Chen Q, Wang H, Ren T, Xie L, Wei T. 2015. Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity. J Gen Virol96(4): 933-938. DOI: 10.1099/jgv.0.000022.
Damayanti TA, Nurjannah T, Listihani L, Hidayat SH, Wiyono S. 2022. Characterization of a variant isolate of Zucchini yellow mosaic virus infecting green kabocha (Cucurbita maxima L.) in Bogor, Indonesia. Arch Phytopathol Plant Prot 55 (1): 121-128. DOI: 10.1080/03235408.2021.2003604.
Hattori M, Komatsu S, Noda H, Matsumoto Y. 2015. Proteome analysis of watery saliva secreted by green rice leafhopper, Nephotettix cincticeps. PLoS One 10(4): e0123671. DOI: 10.1371/journal.pone.012367.
Hibino H, Saleh N, Roechan M. 1979. Transmission of two kinds of rice tungro-associated viruses by insect vectors. Phytopathology 69: 1266-1268. DOI:10.1094/PHYTO-69-1266.
Horgan FG, Crisol ME, Stuart AM, Bernal CC, de Cima ME, Almazan MLP, Ramal AF. 2019. Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 10(10): 328. DOI: 10.3390/insects10100328.
Huang HJ, Lu JB, Li Q, Bao YY, Zhang CX. 2018. Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species. J Proteomics 172:25-35. DOI: 10.1016/j.jprot.2017.11.003.
Hutasoit RT, Ismayanti R. 2020. Resistance test of several tidal swamp rice varieties against tungro disease in greenhouses. Proceedings of the 8th National Seminar on Suboptimal Land in 2020, Food Source Commodities to Improve Health Quality in the Era of the Covid -19 Pandemic, Palembang: 20 October 2020. page. 897-903.
Jabeen A, Kiran TV, Subrahmanyam D, Lakshmi DL, Bhagyanarayana G, Krishnaveni D. 2017. Variations in chlorophyll and carotenoid contents in tungro infected rice plants. J Res Dev 5: 1-7. DOI: 10.4172/2311-3278.1000153.
Kim KH, Raymundo AD, Aikins CM. 2019. Development of a rice tungro epidemiological model for seasonal disease risk management in the Philippines. Eur J Agron 109: 1-11. DOI: 10.1016/j.eja.2019.04.006.
Kim KH, Raymundo AD, Aikins CM. 2019. Development of a rice tungro epidemiological model for seasonal disease risk management in the Philippines. Eur J Agron 4: 1-11. DOI: 10.1016/j.eja.2019.04.006.
Lashari AA, Hattaf K, Zaman GA. 2012. Delay differetial equation model of a vector borne disease with direct transmission. Int J Ecol Econ Stat 27: 25-35.
Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Jepsen JU, Kalinkat J, Neuvonen S, Niemelä P, Terblanche JS, Økland B, Björkman C. 2020. Complex responses of global insect pests to climate warming. Front Ecol Environ 18(3): 141-150. DOI: 10.1002/fee.2160.
Listihani L, Ariati PEP, Yuniti IGAD, Selangga DGW. 2022. The brown planthopper (Nilaparvata lugens) attack and its genetic diversity on rice in Bali, Indonesia. Biodiversitas 23(9): 4696-4704. DOI: 10.13057/biodiv/d230936.
Listihani L, Damayanti TA, Hidayat SH, Wiyono S. 2020. First report of Cucurbit aphid-borne yellows virus on cucumber in Java, Indonesia. J Gen Plant Pathol 86 (3): 219-223. DOI: 10.1007/s10327-019-00905-2.
Listihani L, Yuniti IGAD, Lestari PFK, Ariati PEP. 2022. First report of Sweet Potato Leaf Curl Virus (SPLCV) on Ipomoea batatas in Bali, Indonesia. Indian Phytopathol 75 (2): 595-598. DOI: 10.1007/s42360-022-00489-6.
Listihani, Hidayat SH, Wiyono S, Damayanti TA. 2018. First report of Tobacco mosaic virus on cucumber [Cucumis sativus (L.)] in Java, Indonesia. IOP Conf Ser: Earth Environ Sci 197: 012043. DOI: 10.1088/1755-1315/197/1/012043
Listihani, Hidayat SH, Wiyono S, Damayanti TA. 2019. Characteristic of Tobacco mosaic virus isolated from cucumber and tobacco collected from East Java, Indonesia. Biodiversitas 20: 2937-2942. DOI: 10.13057/biodiv/d201023.
Malathi P, Muzammil SA, Krishnaveni D, Balachandran SM, Mangrauthia SK. 2019. Coat protein 3 of Rice tungro spherical virus is the key target gene for development of RNAi mediated tungro disease resistance in rice. Agri Gene 12: 100084. DOI: 10.1016/j.aggene.2019.100084.
Mangrauthia SK, Jha M, Agarwal S, Sailaja B, Rajeswari B, Krishnaveni D. 2017. Delineation of gene expression pattern in rice under Rice tungro virus and green leafhopper infestation. Indian J Plant Prot 45: 1-7.
Ng JCK, Zhou JS. 2015. Insect vector -plant virus interactions associated with perspectives and future challenges. Curr Opinion Virol 15: 48-55. DOI: 10.1016/j.coviro.2015.07.006.
Otuka A, Matsumura M, Watanabe T, Dinh TV. 2008. A migration analysis for rice planthoppers, Sogatella furcifera (Horvath) and Nilaparvata lugens (Stal.) (Homoptera: Delphachidae), emigrating from northern Vienam from April to May. Appl Entomol Zool 43 (4): 527-534. DOI: 10.1303/aez.2008.527.
Pandawani NP, Listihani L, Widnyana IK, Ariati PEP, Selangga DGW. 2022. High impact of Clerodendrum paniculatum leaf extract to suppress Zucchini yellow mosaic virus infection in zucchini plants. Biodiversitas 23 (6): 2914-2919. DOI: 10.13057/biodiv/d230618.
Roshan DR, Raju SVS. 2017. Influence of abiotic and biotic factors on population dynamics of BPH (Nilaparvata lugens Stal) and GLH (Nephotettix virescens Distant). Crop Res 52: 0970-4884.
Rosida N, Kuswinanti T, Amin N, Nasruddin A. 2020. Epidemiological study on the current status of rice tungro disease in South Sulawesi, Indonesia. J Biol Sci 20(4): 221-231. DOI: 10.3844/ojbsci.2020.221.231.
Sailaja B, Anjum N, Patil YK, Agarwal S, Malathi P, Krishnaveni D, Balachandran SM, Viraktamath BC, Mangrauthia SK. 2013. The complete genome sequence of a south Indian isolate of rice tungro spherical virus reveals evidence of genetic recombination between distinct isolates. Virus Genes 47: 515-523. DOI: 10.1007/s11262-013-0964-5.
Satomi, H. 1972. Yellow dwarf disease of rice in Indonesia. Paper presented at SEAR Symposium on Plant Disease in the Tropics. Yogyakarta, 11-15 September.
Selangga DGW, Hidayat SH, Susila AD, Wiyono S. 2019. The effect of silica (SiO2) to the severity of yellow leaf curl disease on chili pepper. J Perlind Tanam Indones 23(1): 54-60. DOI: 10.22146/jpti.38951. [Indonesian]
Selangga DGW, Listihani L. 2022. Squash leaf curl virus: Species of begomovirus as the cause of butternut squash yield losses in Indonesia. Hayati 29 (6): 806-813. DOI: 10.4308/hjb.29.6.806-813.
Selangga DGW, Temaja IGRM, Wirya GNAS, Sudiarta IP, Listihani L. 2022. First report of Papaya ringspot virus-watermelon strain on melon (Cucumis melo L.) in Bali, Indonesia. Indian Phytopathol 75 (3): 911-914. DOI: 10.1007/s42360-022-00519-3.
Selvam K, Archunan K, Pavitradevi P, Floret VM, Kannan R. 2021. Population dynamics of insects and their natural enemies in rice ecosystem assessed with light traps. Indian J Entomol 308: 1-4. Doi: 10.55446/IJE.2021.308.
Senoaji W, Praptana RH. 2015. Population development of green leafhopper and their predators in several rice varieties. J Perlind Tanam Indones 19(1): 65-72. DOI: 10.22146/jpti.17259. [Indonesian]
Shepard BM, Barrion AT, Litsinger JA. 1987. Helpful insect, spiders and phatogens (Revised ed). Interansional Rice research Institute (IRRI), Los Banos, Philippines.
Singh AK, Ponnuswamy R, Donempudi K, Mangrauthia SK. 2015. The differential reaction of rice hybrids to tungro virus by phenotyping and PCR analysis. J Phytopathol 164: 177-184. DOI: 10.1111/jph.12446.
Skendži´c S, Zovko M, Živkovi´c IP, Leši´c V, Lemi´c D. 2021. The impact of climate change on agricultural insect pests. Insects 12: 440. DOI: 10.3390/ insects12050440.
Srilatha P, Yousuf F, Methre R, Vishnukiran T, Agarwal S, Poli Y, Reddy MR, Vidyasagar B, Shanker C, Krishnaveni D, Triveni S, Brajendra, Praveen S, Balachandran SM, Subrahmanyam D, Mangrauthia SK. 2019. Physical interaction of RTBV ORFI with D1 protein of Oryza sativa and Fe/Zn homeostasis play a key role in symptoms development during rice tungro disease to facilitate the insect mediated virus transmission. Virology 526: 117-124. DOI: 10.1016/j.virol.2018.10.012.
Sutrawati M, Ganefianti DW, Sipriyadi S, Wibowo RH, Agustin Z, Listihani, Selangga DGW. 2021. Disease incidence and molecular diversity of Tungro virus on rice (Oryza sativa) in Bengkulu, Indonesia. Intl J Agric Technol 17 (5): 1973-1984.
Suzuki Y, Astika IGN, Widrawan IKR, Gede IGN, Raga IN. 1992. Rice tungro disease transmitted by the green leafhopper: its epidemiology and forecasting technology. Jpn Agric Res Q 26: 98-104.
Temaja IGRM, Selangga DGW, Phabiola TA, Khalimi K, Listihani L. 2022. Relationship between viruliferous Bemisia tabaci population and disease incidence of Pepper yellow leaf curl Indonesia virus in chili pepper. Biodiversitas 23 (10): 5360-5366. DOI: 10.13057/biodiv/d231046.
Triwidodo H, Listihani. 2020. High impact of PGPR on biostatistic of Aphis craccivora (Hemiptera: Aphididae) on yardlong bean. Biodiversitas 21 (9): 4016-4021. DOI: 10.13057/biodiv/d210912.
Vu Q, Quintana R, Fujita D, Bernal CC, Yasui H, Medina CD, Horgan FG. 2014. Responses and adaptation by Nephotettix virescens to monogenic and pyramided rice lines with Grh-resistance genes. Entomol Exp Appl 15 (2): 179-190. DOI: 10.1111/eea.12149.
Widiarta IN, Kusdiaman D, Hasanuddin A. 1999. Population dynamics of Nephotettix virescens in two rice planting patterns. J Perlind Tanam Indones 5 (1): 42-49. DOI: 10.22146/jpti.9965. [Indonesian]
Zarreena F, Kumara G, Johnsonb AMA, asguptaa I. 2018. Small RNA-based interactions between rice and the viruses which cause the tungro disease. Virology 523: 64-73. DOI: 10.1016/j.virol.2018.07.022.

Most read articles by the same author(s)

1 2 > >>