Beneficial interaction between rice stunt virus and its insect vector Nilaparvata lugens Stal based on life table

##plugins.themes.bootstrap3.article.main##

LISTIHANI LISTIHANI
I GUSTI AYU DIAH YUNITI
PUTU EKA PASMIDI ARIATI
NI PUTU PANDAWANI
DEWA GEDE WIRYANGGA SELANGGA
I GEDE RAI MAYA TEMAJA
GUSTI NGURAH ALIT SUSANTA WIRYA
I PUTU SUDIARTA

Abstract

Abstract. Listihani L, Yuniti IGAD, Ariati PEP, Pandawani NP, Selangga DGW, Temaja IGRM, Wirya GNAS, Sudiarta IP. 2023. Beneficial interaction between rice stunt virus and its insect vector Nilaparvata lugens Stal based on life table. Biodiversitas 24: 4690-4698. The brown planthopper (Nilaparvata lugens) causes direct and indirect damage as a stunting virus vector in rice. Insect vectors and viruses are closely related with respect to disease transmission to host plants. Thus, this research aimed to determine the specific relationship between a virus and its insect vector on the biology and demography statistics of viruliferous brown planthopper (BPH). Research method included the propagation of N. lugens and stunt virus inoculum, the observation of cohort, stadia duration and egg survival rates, imago life span, and N. lugens life table. The BPH life table was arranged with the jackknife method for two treatments: plants infected by stunt virus and healthy plants. The research result showed that plants infected by stunt virus can shorten the BPH nymphal development stage from instar 2 to instar 5, life cycle, preoviposition period, and double time. Plants infected by stunt virus did not influence the BPH hatching pattern but influenced the total number of hatching eggs. The next BPH generation of stunt virus inflected plants increased 29.51 times more from the previous generation, while on healthy plants, the next BPH generation only increased 27.51 times. Virus-infected plants generally appeared to be superior quality hosts for vectors compared to uninfected plants, thus enhancing vector life table and virus spread.

##plugins.themes.bootstrap3.article.details##

References
Ahn JJ, Cho JR, Kim JH, Seo BY. 2020. Thermal effects on the population parameters and growth of Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Insects 11 (8): 481. DOI: 10.3390/insects11080481.
Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL. 2017. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 8: 14493. DOI: 10.1038/ncomms14493.
Bosque-Perez NA, Eigenbrode SD. 2011. The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Res 159: 201-205. DOI: 10.1016/j.virusres.2011.04.020.
Catto MA, Mugerwa H, Myers BK, Pandey S, Dutta B, Srinivasan R. 2022. A review on transcriptional responses of interactions between insect vectors and plant viruses. Cells 11: 693. DOI: 10.3390/cells11040693.
Chen Q, Li N, Wang X, Ma L, Huang JB, Huang GH. 2017. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. Plos One 12 (3): e0173380. DOI: 10.1371/journal.pone.0173380.
Compton A, Tu Z. 2022. Natural and engineered sex ratio distortion in insects. Front Ecol Evol 10: 884159. DOI: 10.3389/fevo.2022.884159.
Dietzgen RG, Mann KS, Johnson KN. 2016. Plant virus–insect vector interactions: current and potential future research directions. Viruses 8: 303. DOI: 10.3390/v8110303.
Gautam S, Mugerwa H, Sundaraj S, Gadhave KR, Murphy JF, Dutta B, Srinivasan R. 2020. Specific and spillover effects on vectors following infection of two RNA viruses in pepper plants. Insects 11: 602. DOI: 10.3390/insects11090602.
Helina S, Sulandari S, Trisyono YA, Hartono S. 2020. Assessments of yield losses due to double infection of Rice ragged stunt virus and Rice grassy stunt virus at different severity in the field, Yogyakarta, Indonesia. Pakistan J Phytopathol 32(2): 129-136. DOI: 10.33866/phytopathol.030.02.0578.
Herrero MI, Dami LC, Fogliata SV, Casmuz AS, Gomez DRS, Gastaminza GA, Murua MG. 2018. Fertility life table, population parameters and biotic potential of Helicoverpa gelotopoeon (Dyar) (Lepidoptera: Noctuidae). An Acad Bras Cienc 90 (4): 3831-3838. DOI: 10.1590/0001-3765201820180318.
Horgan FG, Penalver-Cruz A. 2022. Compatibility of insecticides with rice resistance to planthoppers as influenced by the timing and frequency of applications. Insects 13(2): 106. DOI: 10.3390/insects13020106.
Ingwell LL, Eigenbrode SD, Bosque-Perez NA. 2012. Plant viruses alter insect behavior to enhance their spread. Sci Rep 2: 578. DOI: 10.1038/srep00578.
Janssen A, Fonseca MM, Marcossi I, Kalile MO, Cardodo AC, Walerius AH, Hanel A, Marques V, Ferla JJ, Farias V, Carbajal PAF, Pallini A, Nachman G. 2022. Estimating intrinsic growth rates of arthropods from partial life tables using predatory mites as examples. Exp Appl Acarol 86: 327-342. DOI: 10.1007/s10493-022-00701-2.
Khan J, Khan A, Ahmed N, Alhag SK, Almadiy AA, Sayed S, Alam P, Ullah F. 2022. Age and stage-specific life table parameters of Harmonia dimidiata (Coleoptera: Coccinellidae) fed on Rhopalosiphum padi (Hemiptera: Aphididae) at different temperatures. Egypt J Biol Pest Control 32: 113. DOI: 10.1186/s41938-022-00610-x.
Legarrea S, Barman A, Marchant W, Diffie S, Srinivasan R. 2015. Temporal effects of a begomovirus infection and host plant resistance on the preference and development of an insect vector, Bemisia tabaci, and implications for epidemics. Plos One 10: e0142114. DOI: 10.1371/journal.pone.0142114.
Listihani L, Ariati PEP, Yuniti IGAD, Selangga DGW. 2022a. The brown planthopper (Nilaparvata lugens) attack and its genetic diversity on rice in Bali, Indonesia. Biodiversitas 23 (9): 4696-4704. DOI: 10.13057/biodiv/d230936.
Listihani L, Ariati PEP, Yuniti IGAD, Wijaya LGAS, Yuliadhi KA, Selangga DGW, Wirya GNAS, Sudiarta IP, Sutrawati M, Triwidodo H. 2023. Relationship study between the brown planthopper population and the intensity of Rice ragged stunt virus and Rice grassy stunt virus, as well as the inoculum sources. Int J Agric Technol 19 (3): 1055-1068.
Listihani L, Damayanti TA, Hidayat SH, Wiyono S. 2018a. Moleculer characterization of Papaya ringspot virus type P on Cucumber in Java. J Fitopatol Indones 14 (3): 75. DOI: 10.14692/jfi.14.3.75. [Indonesian]
Listihani L, Damayanti TA, Hidayat SH, Wiyono S. 2020. First report of cucurbit aphid-borne yellows virus on cucumber in Java, Indonesia. J Gen Plant Pathol 86: 219-223. DOI: 10.1007/s10327-019-00905-2.
Listihani L, Yuniti IGAD, Lestari PF, Ariati PEP. 2022b. First report of Sweet potato leaf curl virus (SPLCV) on Ipomoea batatas in Bali, Indonesia. Indian Phytopathol 75 (2): 595-598. DOI: 10.1007/s42360-022-00489-6.
Listihani, Hidayat SH, Wiyono S, Damayanti TA. 2018b. First report of tobacco mosaic virus on cucumber [Cucumis sativus (L.)] in Java, Indonesia. IOP Conf Ser: Earth Environ Sci 197: 012043. DOI 10.1088/1755-1315/197/1/012043.
Listihani, Hidayat SH, Wiyono S, Damayanti TA. 2019. Characteristic of Tobacco mosaic virus isolated from cucumber and tobacco collected from East Java, Indonesia. Biodiversitas 20: 2937-2942. DOI: 10.13057/biodiv/d201023.
Martinie`re A, Bak A, Macia JL, Lautredou N, Gargani D, Doumayrou J, Garzo E, Moreno A, Fereres A, Blanc S, Drucker M. 2013. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. Elife 2: e00183. DOI: 10.7554/eLife.00183.
Mauck K, Bosque-Perez NA, Eigenbrode SD, De Moraes CM, Mescher MC, Fox C. 2012. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Func Ecol 26: 1162-1175. DOI: 10.1111/j.1365-2435.2012.02026.x.
Naranjo SE, Ellsworth PC. 2017. Methodology for developing life tables for sessile insects in the field using the whitefly, Bemisia tabaci, in cotton as a model system. J Vis Exp 129: e56150. DOI: 10.3791/56150.
Nguyen CD, Verdeprado H, Zita D, Sanada-Morimura S, Matsumura M, Virk PS, Brar DS, Horgan FG, Yasui H, Fujita D. 2019. The development and characterization of near-isogenic and pyramided lines carrying resistance genes to brown planthopper with the genetic background of japonica rice (Oryza sativa L.). Plants 8: 498. DOI: 10.3390/plants8110498.
Nguyen TD, Lacombe S, Bangratz M, Ta HA, Vinh do N, Gantet P, Brugidou C. 2015. P2 of Rice grassy stunt virus (RGSV) and p6 and p9 of Rice ragged stunt virus (RRSV) isolates from Vietnam exert suppressor activity on the RNA silencing pathway. Virus Genes 51 (2): 267-275. DOI: 10.1007/s11262-015-1229-2.
NguyenKusuma AF, Sulandari S, Somowiyarjo S, Hartono S. 2018. Molecular diversity of Rice ragged stunt oryza virus in Java and Bali, Indonesia. Proc Pak Acad Sci 55: 57-64.
Ning S, Zhang W, Sun Y, Feng J. 2017. Development of insect life tables: comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci Rep 7: 4821. DOI: 10.1038/s41598-017-05041-5.
Penalver-Cruz A, Horgan FG. 2022. Interactions between rice resistance to planthoppers and honeydew-related egg parasitism under varying levels of nitrogenous fertilizer. Insects 13: 251. DOI: 10.3390/ insects13030251.
Phatthalung TN, Tangkananond W. 2022. The infectivity survival and transmissibility of Rice ragged stunt virus from the frozen-infected rice leaves by the brown planthopper, Nilaparvata lugens Stal. Trends Sci 19(14): 5097. DOI: 10.48048/tis.2022.5097.
Quais MK, Munawar A, Ansari NA, Zhow WW, Zhu ZR. 2020. Interactions between brown planthopper (Nilaparvata lugens) and salinity stressed rice (Oryza sativa) plant are cultivar-specific. Sci Rep 10: 8051. DOI: 10.1038/s41598-020-64925-1.
Rajabaskar D, Bosque-Perez NA, Eigenbrode SD. 2014. Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res 186: 32-37. DOI: 10.1016/j.virusres.2013.11.005.
Ray S, Casteel CL. 2022. Effector-mediated plant–virus–vector interactions. The Plant Cell 34 (5): 1514–1531. DOI: 10.1093/plcell/koac058.
Russianzi W, Anwar R, Triwidodo H. 2021. Biostatistics of fall armyworm Spodoptera frugiperda in maize plants in Bogor, West Java, Indonesia. Biodiversitas 22: 3463-3469. DOI: 10.13057/biodiv/d220655.
Selangga DGW, Listihani L. 2021. Molecular identification of Pepper yellow leaf curl Indonesia virus on chili pepper in Nusa Penida Island. J Trop Plant Pests Dis 21(2): 97-102. DOI: 10.23960/jhptt.22197-102.
Selangga DGW, Wiyono S, Susila AD, Hidayat SH. 2021. Distribution and identification of Pepper yellow leaf curl Indonesia virus infecting chili pepper in Bali Island. J Fitopatol Indones 17(6): 217-224. DOI: 10.14692/jfi.17.6.217-224. [Indonesian]
Selangga DGW, Listihani L, Temaja IGRM, Wirya GNAS, Sudiarta IP, Yuliadhi KA. 2023. Determinants of symptom variation of Pepper yellow leaf curl Indonesia virus in bell pepper and its spread by Bemisia tabaci. Biodiversitas 24: 869-877. DOI: 10.13057/biodiv/d240224.
Selangga DGW, Listihani L. 2022. Squash leaf curl virus: species of begomovirus as the cause of butternut squash yield losses in Indonesia. Hayati J Biosci 29 (6): 806-813. DOI: 10.4308/hjb.29.6.806-813.
Selangga DGW, Temaja IGRM, Wirya GNAS, Sudiarta IP, Listihani L. 2022. First report of Papaya ringspot virus-watermelon strain on melon (Cucumis melo L.) in Bali, Indonesia. Indian Phytopathol 75 (3): 911-914. DOI: 10.1007/s42360-022-00519-3.
Shah NAN, Osman MK, Othman NA, Ahmad F, Ahmad AR. 2019. Identification and counting of brown planthopper in paddy field using image processing techniques. Procedia Comput Sci 163: 580-590. DOI: 10.1016/j.procs.2019.12.140.
Shentu X, Xiao Y, Song Y, Cao Z, Fan J, Yu X. 2020. Comparative analysis of the diversity of the microbial communities between non-fertilized and fertilized eggs of brown planthopper, Nilaparvata lugens Stal. Insects 11 (1): 49. DOI: 10.3390/insects11010049.
Sianipar MS, Djaya L, Santosa E, Soesilohadi RCH, Natawigena WD, Ardiansyah M. 2015. Population of brown plant hopper (Nilaparvata lugens Stal.) and the diversity of its natural enemy in highland paddy rice field in the village of Panyocokan, Ciwidey District, Bandung Regency. Agricultural J 26(2): 111-121. [Indonesian]
Suprihanto, Somowiyarjo S, Hartono S, Trisyono YA. 2015. Identification and molecular diversity of Rice ragged stunt virus and Rice grassy stunt virus in Java, Indonesia. Int J Sci: Basic Appl Res 24(5): 374-386.
Temaja IGRM, Selangga DGW, Phabiola TA, Khalimi K, Listihani L. 2022. Relationship between viruliferous Bemisia tabaci population and disease incidence of Pepper yellow leaf curl Indonesia virus in chili pepper. Biodiversitas 23(10): 5360-5366. DOI: 10.13057/biodiv/d231046.
Triwidodo H, Agustini A, Listihani L. 2020. Biology and the statistic demographic of Aphis glycines Matsumura (Hemiptera: Aphididae) on the soybean with plant growth promoting rhizobacteria (PGPR) treatment. J Perlind Tanam Indones 24 (1): 54-60. DOI: 10.22146/jpti.68694. [Indonesian]
Triwidodo H, Listihani. 2020. High impact of PGPR on biostatistic of Aphis craccivora (Hemiptera: Aphididae) on yardlong bean. Biodiversitas 21: 4016-4021. DOI: 10.13057/biodiv/d210912.
Tyagi S, Narayana S, Singh RN, Srivastava CP, Twinkle S, Das SK, Jeer M. 2022. Migratory behaviour of brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae), in India as inferred from genetic diversity and reverse trajectory analysis. 3 Biotech 12: 266. DOI: 10.1007/s13205-022-03337-6.
Vongpa V, Amornsak W, Gordh G. 2016. Development, reproduction and longevity of Aprostocetus sp. (Hymenoptera: Eulophidae), an egg parasitoid of the Brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae). Agric Nat Resour 50: 291-294. DOI: 10.1016/j.anres.2016.10.001.
Wang T, Ren YL, Tian TA, Li ZT, Wang XN, Wu ZY, Tang J, Liu JF. 2021. Determining the effect of temperature on the growth and reproduction of Lasioderma serricorne using two-sex life table analysis. Insects 12 (12): 1103. DOI: 10.3390/insects12121103.
Zhang T, Luan JB, Qi JF, Huang CJ, Li M, Zhou XP, Liu SS. 2012. Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21: 1294-1304. DOI: 10.1111/j.1365-294X.2012.05457.x.
Zheng L, Mao Q, Xie L, Wei T. 2014. Infection route of Rice grassy stunt virus, a tenuivirus, in the body of its brown planthopper vector, Nilaparvata lugens (Hemiptera: Delphacidae) after ingestion of virus. Virus Res 188:170-173. DOI: 10.1016/j.virusres.2014.04.008.

Most read articles by the same author(s)

1 2 > >>