Diversity of Salacca zalacca (Gaertn.) Voss from Bali, Indonesia based on morphological and molecular characters

##plugins.themes.bootstrap3.article.main##

I KETUT SUMANTRA
LISTIHANI LISTIHANI
PUTU EKA PASMIDI ARIATI

Abstract

Abstract. Sumantra IK, Listihani L, Ariati PEP. 2024. Diversity of Salacca zalacca (Gaertn.) Voss from Bali, Indonesia based on morphological and molecular characters. Biodiversitas 25: 1771-1780. There are several salak (Salacca zalacca (Gaertn.) Voss) variations based on epicarp (skin) color, pulp aroma, and taste. The different characters are not only found among different production centers, but also among plants cultivated in the same area. This study aimed to identify the morphological and molecular characters of 16 salak cultivars from Bali, Indonesia. Morphological characters were described based on the individual test guideline for salak species and molecular characters were analyzed using four Random Amplified Polymorphic DNA (RAPD) primers, namely OPA3, OPC7, OPD4, and OPD20. The morphological characters of 16 salak cultivars are very diverse in plant height, number of leaflets, leaflets length and width, leaf sheath length, fruit skin color, fruit shape, fruit length, fruit diameter, number of fruits per bunch, number of seeds per fruit, and thick pulp. A total of 37 DNA bands ranging from 250-4000 bp was obtained and 28 bands of which are polymorphic. The dendrogram formed 4 clusters. Cluster 1 consists of Bingin, Kelapa, Gulapasir, Nangka, Muani, Gonong, Penyalin, Gondok, Layu, Sudamala, Merah, Jaka, and Putih salak cultivars. Cluster 2 consists of Pada cultivar, cluster 3 consists of Injin cultivar, and cluster 4 consists of Nenas cultivar. This research is the first diversity analysis report on S. zalacca from Bali based on morphological and molecular characters.

##plugins.themes.bootstrap3.article.details##

References
Adelina R, Suliansyah I, Syarif A, Warnita W. 2021. Phenology of flowering and fruit set in snake fruit (Salacca Sumatrana Becc.). Acta Agrobot 74:1-12. DOI: 10.5586/aa.742
Al-Khayri JM, Mahdy EMB, Taha HSA, Eldomiaty AS, Abd-Elfattah MA, Abdel Latef AAH, Rezk AA, Shehata WF, Almaghasla MI, Shalaby TA, Sattar MN, Ghazzawy HS, Awad MF, Alali KM, Jain SM, Hassanin AA. 2022. Genetic and morphological diversity assessment of five kalanchoe genotypes by SCoT, ISSR and RAPD-PCR markers. Plants 11(13):1722. DOI: 10.3390/plants11131722
Anisa WN, Afifah EN, Murti RH. 2022. Selection of tomato breeding lines based on morphological traits associated with high yield potential in double-cross population. Biodiversitas 23: 2973-2980. DOI: 10.13057/biodiv/d230624
Babu KN, Sheeja TE, Minoo D, Rajesh MK, Samsudeen K, Suraby EJ, Kumar IPV. 2021. Random Amplified Polymorphic DNA (RAPD) and derived techniques. Methods Mol Biol 2222: 219-247. DOI: 10.1007/978-1-0716-0997-2_13
Bais K. 2016. Why Thailand is the leading exporter of durian, mangosteen and other tropical fruits. Utar Agric Sci 2(3): 5-15.
Budiyanti T, Hadiati S, Prihatini R, Sobir. 2015. Genetic diversity of Indonesian snake fruits as food diversification resources. Intl J Adv Sci Eng Inform Technol 5(3): 41-44. DOI: 10.18517/ijaseit.5.3.513
Budiyanti T, Hadiati S, Prihatini R. 2019. Genetic variability on inter and intra population of salacca pondoh and salacca jawa crosses. AIP Conference Proceedings 2120(1): 030033. DOI: 10.1063/1.5115637
Cahyarini RD, Yunus A, Purwanto E. 2004. Identification of the genetic diversity of some local varieties of soybean in Java based on isozyme analysis. Agrosains 6 (2): 79-83. [Indonesian]
Cepkova PH, Jagr M, Janovska D, Dvoracek V, Kozak AK, Viehmannova I. 2021. Comprehensive Mass Spectrometric Analysis of Snake Fruit: Salak (Salacca zalacca). J Food Qual 2021: 6621811. DOI: 10.1155/2021/6621811.
Cockerton HM, Karlström A, Johnson AW, Li B, Stavridou E, Hopson KJ, Whitehouse AB, Harrison RJ. 2021. Genomic informed breeding strategies for strawberry yield and fruit quality traits. Front Plant Sci 12: 724847. DOI: 10.3389/fpls.2021.724847
Colantonioa V, Ferrao LFV, Tiemana DM, Bliznyuk N, Simse C, Kleea HJ, Munoza P, Resende MFR. 2022. Metabolomic selection for enhanced fruit flavor. PNAS 119(7): e2115865119. DOI: 10.1073/pnas.2115865119
Darmadi AAK, Hartana A, Mogea JP. 2002. Bali salak inflorescence. Hayati 9(2): 59-61.
Ministry of Agriculture Republic Indonesia. 2006. Individual testing guide, novelty, uniqueness, uniformity and stability of salak (Salacca zalacca Gaertn. (Voss). Ministry of Agriculture Republic Indonesia.
Doyle JJ, Doyle JL. 1990. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull 19:11-15.
Ediwirman, Suliansyah I, Gustian, Jamsari. 2017. Specific rapd fragments related with sex type in salacca (Salacca edulis L.). Int J Agric Sci 1(1): 34-46.
Elly SS, Watuguly TW, Rumahlatu D. 2018. Short Communication: Genetic diversity of Salacca edulis from West Seram District, Maluku, Indonesia based on morphological characters and RAPD profiles. Biodiversitas 19(5): 1777-1782. DOI: 10.13057/biodiv/d190526
Fendiyanto MH, Satrio RD, Darmadi D. 2020. Metabolic profiling and pathwayanalysis in red arillus of Salacca sumatrana demonstrate significant pyruvate, sulfur, and fatty acid metabolisms. Biodiversitas 21(9): 4361-4368. DOI: 10.13057/biodiv/d210955
Gallardo RK, Zhang Q, Dossett M, Polashock JJ, Rodriguez-Saona C, Vorsa N, Edger PP, Ashrafi H, Babiker E, Finn CE, Iorizzo M. 2018. Breeding trait priorities of the blueberry industry in the United States and Canada. Hort Science 53(7): 1021-1028.
Gari NM. 2011. Multivariate analysis of bali salak cultivars (Salacca zalacca var. Amboinensis (becc.) Mogea) based on leaf micromorphological characters. Biology J 15(1): 15-18.
Gilbert JL, Guthart MJ, Gezan SA, Carvalho MPD, Schwieterman ML, Colquhoun TA, Bartoshuk LM, Sims CA, Clark DG, Olmstead JW. 2015. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. Plos One 10: e0138494. DOI: 10.1371/journal.pone.0138494
Girsang E, Lister INE, Ginting CN, Khu A, Samin B, Widowati W, Wibowo S, Rizal R. 2019. Chemical constituents of snake fruit (Salacca zalacca (Gaert.) Voss) peel and in silico anti-aging analysis. Mol Cell Biomed Sci 3(2): 122-128. DOI: 10.21705/mcbs.v3i2.80
Gurijala H, Reddy D, Jasti PK. 2015. Biodiversity of six varieties of Mangifera indica using RAPD. Int J Life Sci Biotechnol Pharma Res 4(2): 100-103.
Hakim L, Widyorini R, Nugroho WD, Prayitno TA. 2019. Anatomical, chemical, and mechanical properties of fibrovascular bundles of salacca (snake fruit) frond. Bioresources 14(4): 7943-7957. DOI: 10.15376/biores.14.4.7943-7957
Hakim L, Widyorini R, Nugroho WD, Prayitno TA. 2021. Radial variability of fibrovascular bundle properties of salacca (Salacca zalacca) fronds cultivated on Turi Agrotourism in Yogyakarta, Indonesia. Biodiversitas 22(8): 3594-3603. DOI: 10.13057/biodiv/d220861
Herawati W, Amurwanto A, Nafi’ah Z, Ningrum AM, Samiyarsih S. 2018. Variation analysis of three Banyumas local salak cultivars (Salacca zalacca) based on leaf anatomy and genetic diversity. Biodiversitas 19 (1): 119-125. DOI: 10.13057/biodiv/d190118
Ilmiah HH, Sulistyaningsih E, Joko T. 2021. Fruit morphology, antioxidant activity, total phenolic and flavonoid contents of Salacca zalacca (Gaertner) Voss by applications of goat manures and Bacillus velezensis B-27. Caraka Tani J Sustain Agric 36(2): 270-282. DOI: 10.20961/carakatani.v36i2.43798
Indah NK, Indriyani S, Arumingtyas EL, Azrianingsih R. 2019. Phenetic Relationship of pasuruan snake fruits (Salacca zalacca (Gaertn.) Voss. Proceeding: The 9th International Conference on Global Resource Conservation (ICGRC) and AJI from Ritsumeikan University. AIP Conference Proceedings 2019: 020011-1–020011-5. DOI: 10.1063/1.5061847
Ismail NA, Baka RMFB. 2018. Salak-Salacca zalacca. In Rodrigues S, Silva EDO, Brito RSD (eds). Exotic Fruits Reference Guide. Elsevier, Oxford (UK).
Klee HJ, Tieman DM. 2018. The genetics of fruit flavour preferences. Nat Rev Genet 19: 347–356. DOI: 10.1038/s41576-018-0002-5
Kumoro AC, Alhanif M, Wardhani DH. 2020. A critical review on tropical fruits seeds as prospective sources of nutritional and bioactive compounds for functional foods development: A case of Indonesian exotic fruits. Int J Food Sci 2020:4051475. DOI: 10.1155/2020/4051475
Listihani L, Ariati PEP, Yuniti IGAD, Selangga DGW. 2022. The brown planthopper (Nilaparvata lugens) attack and its genetic diversity on rice in Bali, Indonesia. Biodiversitas 23(9): 4696-4704. DOI: 10.13057/biodiv/d230936.
Listihani L, Damayanti TA, Hidayat SH, Wiyono S. 2020. First report of cucurbit aphid-borne yellows virus on cucumber in Java, Indonesia. J Gen Plant Pathol 86(3):219-23. DOI: 10.1007/s10327-019-00905-2
Martínez-Fortún J, Phillips DW, Jones HD. 2022. Natural and artificial sources of genetic variation used in crop breeding: A baseline comparator for genome editing. Front Genome Ed 4: 937853. DOI: 10.3389/fgeed.2022.937853
Matatula EA, Ashari S, Soegianto A. 2021. Analysis of the relationship between snake fruits Sidempuan (Salacca sumatrana Becc.) and Riring (Salacca zalacca var. amboinensis) using the morphological characterization approach. Res J Life Sci 8(3): 126-133.
Mazumdar P, Pratama H, Lau SE, Teo CH, Harikrishna JA. 2019. Biology, phytochemical profile and prospects for snake fruit: An antioxidant-rich fruit of South East Asia. Trends Food Sci Technol 91: 147-158. DOI: 10.1016/j.tifs.2019.06.017.
Nandariyah N, Parjanto P, Ratu PP. 2021. Genetic of salak pondoh, gading varieties and its hybrids based on RAPD markers. J Biodivers Biotechnol 1(1): 5-10. DOI: 10.20961/jbb.v1i1. 50396
Nascimento MV, Ávila MCR, Abreu-Tarazi MFD, Nogueira APO, Campos LFC, Nascimento ADR. 2020. Identification of promising tomato breeding lines with determinate growth by selection index. Adv Hortic Sci 34(3): 337-347.
Prihatini R, Dinarti D, Sutanto A, Sudarsono. 2022. IOP Conf Series: Earth and Environmental Science 1105: 012030. DOI: 10.1088/1755-1315/1105/1/012030.
Rai IN, Suada IK, Proborini MW, Wiraatmaja IW, Semenov M, Krasnov G. 2019. Indigenous endomycorrhizal fungi at salak (Salacca zalacca) plantations in Bali, Indonesia and their colonization of the roots. Biodiversitas 20(8): 2410-2416. DOI: 10.13057/biodiv/d200840
Ritonga EN, Satria B, Gustian G. 2018. Analysis of phenotypic variability and correlation on sugar content contributing phenotypes of salak (Salacca sumatrana Reinw var. Sidempuan.) under various altitudes. Int J Agric Environ Biotechnol 3(6): 2103–2109. DOI: 10.22161/ijeab/3.6.18
Saleh MSM, Siddiqui MJ, Mediani A, Ismail NH, Ahmed QU, So'ad, SZM, Besbes SS. 2018. Salacca zalacca: A short review of the palm botany, pharmacological uses and phytochemistry. Asian Pac J Trop Med 11 (12): 645-652. DOI: 10.4103/1995-7645.248321.
Selangga DGW, Listihani L. 2022. Squash leaf curl virus: species of begomovirus as the cause of butternut squash yield losses in Indonesia. Hayati J Biosci 29(6): 806-813. DOI: 10.4308/hjb.29.6.806-813.
Sumantra IK, Pura ILNS, Ashari S. 2014. Heat unit, phenology and fruit quality of Salak (Salacca zalacca var. amboinensis) cv. Gulapasir on different elevations in Tabanan regency-Bali. Agric For Fish 3 (2): 102-107. DOI: 10.11648/j.aff.20140302.18.
Sumantra K, Ashari S, Wardiyati T, Suryanto A. 2012. Diversity of shade trees and their influence on the microclimate of agro-ecosystem and fruit production of Gulapasir Salak (Salacca zalacca var. Amboinensis) fruit. Int J Basic Appl Sci 12(6): 214-221.
Sumantra K, Martiningsih E. 2016. Evaluation of the superior characters of salak Gulapasir cultivars in two harvest seasons at the new development area in Bali. Int J Basic Appl Sci 16(6):19-22.
Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC. 2020. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science 61: 839-852. DOI: 10.1002/csc2.20377
Tamba IM, Sumantra IK. 2022. IOP Conf Series: Earth and Environmental Science 1107: 012074. DOI: 10.1088/1755-1315/1107/1/012074.
Tan SS, Tan ST, Tan CX. 2020. Antioxidant, hypoglycemic and anti-hypertensive properties of extracts derived from peel, fruit and kernel of Salak. Brit Food J 122(10): 3029-3038. DOI: 10.1108/BFJ-03-2020-0233
Vaidya G, Naik GR. 2014. Molecular identification of sex in Simarouba glauca by RAPD markers for crop improvement strategies. Biotechnol Reports 4: 56–59.
Viana AP, Resende MDVD, Riaz S, Walker MA. 2016. Genome selection in fruit breeding: application to table grapes. Sci Agric 73(2): 142-149. DOI: 10.1590/0103-9016-2014-0323
Wahyudi MS, Faizah M, Zuhria SA. 2021. Morphological characteristics and kinship relationships of Salak Pace, Salak Hitam, and Salak Kuning in Bedahlawak Jombang. Agaricus: Advances Agriculture Science & Farming 1(2): 51-61.
Zaini NAM, Osman A, Hamid AA, Ebrahimpour A, Saari N. 2013. Purification and characterization of membrane-bound polyphenoloxidase (mPPO) from snake fruit [Salacca zalacca (Gaertn.) Voss]. Food Chem 136(2): 407-414. DOI: 10.1016/j.foodchem.2012.08.034
Zubaidah E, Dewantari FJ, Novitasari FR, Srianta I, Blanc PJ. 2018. Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatal Agric Biotechnol 13:198-203. DOI: 10.1016/j.bcab.2017.12.012
Zumaidar T, Chikmawati, Hartana A, Sobir, Mogea JP, Borchsenius F. 2014. Salacca acehensis (Arecaceae), A new species from Sumatra, Indonesia. Phytotaxa 159(4): 287-290. DOI: 10.11646/phytotaxa.159.4.5

Most read articles by the same author(s)

1 2 > >>